High-Resolution Epitope Mapping and Affinity Binding Analysis Comparing a New Anti-Human LAG3 Rabbit Antibody Clone to the Commonly Used Mouse 17B4 Clone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Antibodies, Peptides and Proteins
2.2. Cell Lysates
2.3. Formalin Fixed Cell Line Blocks
2.4. Tissue
2.5. Western Blot Reagents and Apparatus
2.6. Automated Capillary Electrophoresis (ACE) Reagents and Instrumentation
2.7. Surface Plasmon Resonance (SPR) Reagents and Instrumentation
2.8. Western Blot and ACE Assays
2.9. ACE Antibody Titration Assays
2.10. ACE Fragmented Immunogen and Alanine Substituted Peptide Inhibition Assays
2.11. SPR Epitope Binding Kinetics Assays
2.12. IHC Peptide Inhibition Assays
2.13. Chromogenic Multiplex IHC Assay
3. Results
3.1. Western Blot, IHC, and ACE Analysis of Rabbit SP464 and Mouse 17B4 Target Binding
3.2. Binding Properties and Binding Kinetics of the Rabbit SP464 and Mouse 17B4 Antibodies
3.3. Mapping of Rabbit SP464 and Mouse 17B4 Epitopes on the 30-Mer Immunogen
3.4. Identification of Amino Acids in the SP464 Epitope Critical for Binding to Rabbit SP464
3.5. Application of SP464 in a Chromogenic Multiplex Assay
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Triebel, F.; Jitsukawa, S.; Baixeras, E.; Roman-Roman, S.; Genevee, C.; Viegas-Pequignot, E.; Hercend, T. Lag-3 novel lymphocyte activation gene closely related to cd4. J. Exp. Med. 1990, 171, 1393–1405. [Google Scholar] [CrossRef] [PubMed]
- Maruhashi, T.; Sugiura, D.; Okazaki, I.M.; Okazaki, T. Lag-3: From molecular functions to clinical applications. J. Immunother. Cancer 2020, 8, e001014. [Google Scholar] [CrossRef] [PubMed]
- Lythgoe, M.P.; Liu, D.S.K.; Annels, N.E.; Krell, J.; Frampton, A.E. Gene of the month: Lymphocyte-activation gene 3 (lag-3). J. Clin. Pathol. 2021, 74, 543–547. [Google Scholar] [CrossRef] [PubMed]
- Tawbi, H.A.; Schadendorf, D.; Lipson, E.J.; Ascierto, P.A.; Matamala, L.; Castillo Gutierrez, E.; Rutkowski, P.; Gogas, H.J.; Lao, C.D.; De Menezes, J.J.; et al. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N. Engl. J. Med. 2022, 386, 24–34. [Google Scholar] [CrossRef]
- Thorsson, V.; Gibbs, D.L.; Brown, S.D.; Wolf, D.; Bortone, D.S.; Ou Yang, T.H.; Porta-Pardo, E.; Gao, G.F.; Plaisier, C.L.; Eddy, J.A.; et al. The immune landscape of cancer. Immunity 2018, 48, 812–830.e814. [Google Scholar] [CrossRef]
- Davidson, E.; Doranz, B.J. A high-throughput shotgun mutagenesis approach to mapping b-cell antibody epitopes. Immunology 2014, 143, 13–20. [Google Scholar] [CrossRef]
- Malmborg, A.; Borrebaeck, C.A.K. Biacore as a tool in antibody engineering. J. Immunol. Methods 1995, 183, 7–13. [Google Scholar] [CrossRef]
- Van Regenmortel, M.H.V.; Altschuh, D.; Chatellier, J.; Christensen, L.; Rauffer-Bruyere, N.; Richalet-Secordel, P.; Witz, J.; Zeder-Lutz, G. Measurement of antigen-antibody interactions with biosensors. J. Mol. Recognit. 1998, 11, 163–197. [Google Scholar] [CrossRef]
- Ditto, N.T.; Brooks, B.D. The emerging role of biosensor-based epitope binning and mapping in antibody-based drug discovery. Expert Opin. Drug Discov. 2016, 11, 925–937. [Google Scholar] [CrossRef]
- Guo, Z.; Wilson, J.R.; York, I.A.; Stevens, J. Biosensor-based epitope mapping of antibodies targeting the hemagglutinin and neuraminidase of influenza a virus. J. Immunol. Methods 2018, 461, 23–29. [Google Scholar] [CrossRef]
- Carter, J.M.; Loomis-Price, L. B cell epitope mapping using synthetic peptides. In Current Protocols in Immunology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004. [Google Scholar]
- Davies, D.R.; Cohen, G.H. Review interactions of protein antigens with antibodies. Proc. Natl. Acad. Sci. USA 1996, 93, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Malito, E.; Carfi, A.; Bottomley, M.J. Protein crystallography in vaccine research and development. Int. J. Mol. Sci. 2015, 16, 13106–13140. [Google Scholar] [CrossRef] [PubMed]
- Gershoni, J.M.; Roitburd-Berman, A.; Siman-Tov, D.D.; Freund, N.T.; Weiss, Y. Epitope mapping the first step in developing epitope-based vaccines. Biodrugs 2007, 21, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Valente, A.P.; Manzano-Rendeiro, M. Mapping conformational epitopes by nmr spectroscopy. Curr. Opin. Virol. 2021, 49, 1–6. [Google Scholar] [CrossRef]
- Opuni, K.F.M.; Al-Majdoub, M.; Yefremova, Y.; El-Kased, R.F.; Koy, C.; Glocker, M.O. Mass spectrometric epitope mapping. Mass Spectrom. Rev. 2018, 37, 229–241. [Google Scholar] [CrossRef]
- Sun, H.; Ma, L.; Wang, L.; Xiao, P.; Li, H.; Zhou, M.; Song, D. Research advances in hydrogen-deuterium exchange mass spectrometry for protein epitope mapping. Anal. Bioanal. Chem. 2021, 413, 2345–2359. [Google Scholar] [CrossRef]
- Hecker, M.; Lorenz, P.; Steinbeck, F.; Hong, L.; Riemekasten, G.; Li, Y.; Zettl, U.K.; Thiesen, H.J. Computational analysis of high-density peptide microarray data with application from systemic sclerosis to multiple sclerosis. Autoimmun. Rev. 2012, 11, 180–190. [Google Scholar] [CrossRef]
- Beck-Sickinger, A.G.; Jung, G. Epitope mapping synthetic approaches to the understanding of molecular recognition in the immune system. Pharm. Acta Helv. 1993, 68, 3–20. [Google Scholar] [CrossRef]
- Geysen, H.M.; Meloen, R.H.; Barteling, S.J. Use of peptide synthesisto probe viral antigens for epitopes to a resolutin of a single amino acid. Proc. Natl. Acad. Sci. USA 1984, 81, 3998–4002. [Google Scholar] [CrossRef]
- Ladner, R.C. Mapping the epitopes of antibodies. Biotechnol. Genet. Eng. Rev. 2007, 24, 1–30. [Google Scholar] [CrossRef]
- Ehlers, A.M.; Blankestijn, M.A.; Knulst, A.C.; Klinge, M.; Otten, H.G. Can alternative epitope mapping approaches increase the impact of b-cell epitopes in food allergy diagnostics? Clin. Exp. Allergy 2019, 49, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Luo, Y.; Michel, F.; Hogan, R.J.; He, Y.; Fu, Z.F. Characterization of conformation-specific monoclonal antibodies against rabies virus nucleoprotein. Arch. Virol. 2010, 155, 1187–1192. [Google Scholar] [CrossRef] [PubMed]
- Baixeras, E.; Huard, B.; Miossec, C.; Jitsukawa, S.; Martin, M.; Hercend, T.; Auffray, C.; Triebel, F.; Piatier-Tonneau, D. Characterization of lymphocyte activation gene 3-encoded protein. A new ligand for human leukocyte antigen class ii antigens. J. Exp. Med. 1992, 176, 327–337. [Google Scholar] [CrossRef]
- Calhoun, B.C.; Mosteller, B.; Warren, D.; Smith, M.; Jordi Rowe, J.; Lanigan, C.P.; Mrazeck, K.C.; Walker, E.; Newell, A.H.; Jones, R. Analytical and clinical performance of progesterone receptor antibodies in breast cancer. Ann. Diagn. Pathol. 2018, 35, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Rich, R.L.; Myszka, D.G. Survey of the 2009 commercial optical biosensor literature. J. Mol. Recognit. 2011, 24, 892–914. [Google Scholar] [CrossRef]
- Roberts, E.A.; Morrison, L.E.; Behman, L.J.; Draganova-Tacheva, R.; O’Neill, R.; Solomides, C.C. Chromogenic immunohistochemical quadruplex provides accurate diagnostic differentiation of non-small cell lung cancer. Ann. Diagn. Pathol. 2020, 45, 151454. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Hubbard, A.; Jones, T.; Racolta, A.; Bhaumik, S.; Cummins, N.; Zhang, L.; Garsha, K.; Ventura, F.; Lefever, M.R.; et al. Fully automated 5-plex fluorescent immunohistochemistry with tyramide signal amplification and same species antibodies. Lab. Investig. 2017, 97, 873–885. [Google Scholar] [CrossRef] [PubMed]
- Morrison, L.E.; Lefever, M.R.; Behman, L.J.; Leibold, T.; Roberts, E.A.; Horchner, U.B.; Bauer, D.R. Brightfield multiplex immunohistochemistry with multispectral imaging. Lab. Investig. 2020, 100, 1124–1136. [Google Scholar] [CrossRef]
- Ilie, M.; Beaulande, M.; Long-Mira, E.; Bontoux, C.; Zahaf, K.; Lalvee, S.; Hamila, M.; Benzaquen, J.; Cohen, C.; Berthet, J.P.; et al. Analytical validation of automated multiplex chromogenic immunohistochemistry for diagnostic and predictive purpose in non-small cell lung cancer. Lung Cancer 2022, 166, 1–8. [Google Scholar] [CrossRef]
- Dracopoli, N.C.; Boguski, M.S. The evolution of oncology companion diagnostics from signal transduction to immuno-oncology. Trends Pharmacol. Sci. 2017, 38, 41–54. [Google Scholar] [CrossRef]
- Wojcik, J.B.; Desai, K.; Avraam, K.; Vandebroek, A.; Dillon, L.M.; Giacomazzi, G.; Rypens, C.; Benci, J.L. Consistent measurement of lag3 expression across multiple staining platforms with the 17b4 antibodyclone. bioRxiv 2022. [Google Scholar] [CrossRef]
- Saleh, R.R.; Peinado, P.; Fuentes-Antras, J.; Perez-Segura, P.; Pandiella, A.; Amir, E.; Ocana, A. Prognostic value of lymphocyte-activation gene 3 (lag3) in cancer: A meta-analysis. Front. Oncol. 2019, 9, 1040. [Google Scholar] [CrossRef] [PubMed]
- Aroldi, F.; Saleh, R.; Jafferji, I.; Barreto, C.; Saberian, C.; Middleton, M.R. Lag3: From bench to bedside. Cancer Treat. Res. 2022, 183, 185–199. [Google Scholar] [PubMed]
ACE | SPR | IHC Score (% Positive) | |||||||
---|---|---|---|---|---|---|---|---|---|
Peptide | IC50, nM | Hill Slope | Ka, 1/Ms | Kd, 1/s | KD, nM | Half-Life, min | 5000 nM | 500 nM | 50 nM |
P76: AGHPLAPGPHP | 10 | −1.7 | 2.4 ×105 | 1.3 ×10−4 | 0.6 | 88 | 0 | 0 | 3 (30%) |
G77: PAHPLAPGPHP | 26 | −0.95 | 1.8 ×105 | 1.9 ×10−3 | 10 | 6 | 0 | 2 (20%) | 3 (30%) |
H78: PGAPLAPGPHP | 3600 | −0.81 | NA | NA | No Binding | NA | 3 (50%) | 3 (50%) | 3 (50%) |
P79: PGHALAPGPHP | 74 | −0.81 | 2.3 ×105 | 4.6 ×10−3 | 20 | 2 | 1 (10%) | 3 (30%) | 3 (50%) |
L80: PGHPAAPGPHP | 6000 | −0.65 | NA | NA | No Binding | NA | 3 (50%) | 3 (50%) | 3 (50%) |
A81: PGHPLAPGPHP | 11 | −1.7 | 1.9 ×105 | 5.5 ×10−5 | 0.3 | 211 | 0 | 0 | 2 (50%) |
P82: PGHPLAAGPHP | 28 | −0.97 | 3.7 ×105 | 2.5 ×10−3 | 6.9 | 5 | 1 (2%) | 2 (50%) | 3 (50%) |
G83: PGHPLAPAPHP | 13 | −0.90 | 1.7 ×105 | 1.1 ×10−3 | 6.5 | 10 | 1 (1%) | 2 (20%) | 2 (50%) |
P84: PGHPLAPGAHP | 13 | −1.2 | 1.3 ×105 | 2.9 ×10−4 | 2 | 40 | 0 | 1 (3%) | 2 (50%) |
H85: PGHPLAPGPAP | 6.5 | −2.4 | 1.6 ×105 | 1.5 ×10−4 | 0.9 | 78 | 0 | 1 (1%) | 2 (50%) |
P86: PGHPLAPGPHA | 14 | −2.4 | 2.0 ×105 | 6.2 ×10−5 | 0.3 | 188 | 0 | 0 | 2 (50%) |
Amino Acid Designation: | P76 | G77 | H78 | P79 | L80 | A81 | P82 | G83 | P84 | H85 | P86 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ACE | IC50 | P | G | H | P | L | A | P | G | P | H | P |
Hill Slope | P | G | H | P | L | A | P | G | P | H | P | |
SPR | P | G | H | P | L | A | P | G | P | H | P | |
IHC | P | G | H | P | L | A | P | G | P | H | P |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Warren, P.D.; Dodson, M.S.; Smith, M.H.; Landowski, T.H.; Palting, J.D.; Towne, P. High-Resolution Epitope Mapping and Affinity Binding Analysis Comparing a New Anti-Human LAG3 Rabbit Antibody Clone to the Commonly Used Mouse 17B4 Clone. Antibodies 2022, 11, 60. https://doi.org/10.3390/antib11040060
Warren PD, Dodson MS, Smith MH, Landowski TH, Palting JD, Towne P. High-Resolution Epitope Mapping and Affinity Binding Analysis Comparing a New Anti-Human LAG3 Rabbit Antibody Clone to the Commonly Used Mouse 17B4 Clone. Antibodies. 2022; 11(4):60. https://doi.org/10.3390/antib11040060
Chicago/Turabian StyleWarren, P. Daniel, Mark S. Dodson, Margaret H. Smith, Terry H. Landowski, John Douglas Palting, and Penny Towne. 2022. "High-Resolution Epitope Mapping and Affinity Binding Analysis Comparing a New Anti-Human LAG3 Rabbit Antibody Clone to the Commonly Used Mouse 17B4 Clone" Antibodies 11, no. 4: 60. https://doi.org/10.3390/antib11040060
APA StyleWarren, P. D., Dodson, M. S., Smith, M. H., Landowski, T. H., Palting, J. D., & Towne, P. (2022). High-Resolution Epitope Mapping and Affinity Binding Analysis Comparing a New Anti-Human LAG3 Rabbit Antibody Clone to the Commonly Used Mouse 17B4 Clone. Antibodies, 11(4), 60. https://doi.org/10.3390/antib11040060