Neutralization of Different Variants of SARS-CoV-2 by a F(ab′)2 Preparation from Sera of Horses Immunized with the Viral Receptor Binding Domain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Equine Anti-RBD Hyperimmune Preparation
2.2. Viral Strains and Cells
2.3. Neutralization Assay
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- COVID. Coronavirus Statistics. Worldometer. Available online: https://www.worldometers.info/coronavirus/ (accessed on 31 July 2023).
- Domingo, E.; García-Crespo, C.; Lobo-Vega, R.; Perales, C. Mutation Rates, Mutation Frequencies, and Proofreading-Repair Activities in RNA Virus Genetics. Viruses 2021, 13, 1882. [Google Scholar] [CrossRef] [PubMed]
- Wei, L. Retrospect of the Two-Year Debate: What Fuels the Evolution of SARS-CoV-2: RNA Editing or Replication Error? Curr. Microbiol. 2023, 80, 151. [Google Scholar] [CrossRef] [PubMed]
- Carabelli, A.M.; Peacock, T.P.; Thorne, L.G.; Harvey, W.T.; Hughes, J.; COVID-19 Genomics UK Consortium; Peacock, S.J.; Barclay, W.S.; de Silva, T.I.; Towers, G.J.; et al. SARS-CoV-2 variant biology: Immune escape, transmission and fitness. Nat. Rev. Microbiol. 2023, 21, 162–177. [Google Scholar] [CrossRef] [PubMed]
- Ortega, J.T.; Zambrano, J.L.; Jastrzebska, B.; Liprandi, F.; Rangel, H.R.; Pujol, F.H. Understanding Severe Acute Respiratory Syndrome Coronavirus 2 Replication to Design Efficient Drug Combination Therapies. Intervirology 2020, 63, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Gao, G.F. Viral targets for vaccines against COVID-19. Nat. Rev. Immunol. 2021, 21, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Ortega, J.T.; Pujol, F.H.; Jastrzebska, B.; Rangel, H.R. Mutations in the SARS-CoV-2 spike protein modulate the virus affinity to the human ACE2 receptor, an in silico analysis. EXCLI J. 2021, 20, 585–600. [Google Scholar] [PubMed]
- Miteva, D.; Kitanova, M.; Batselova, H.; Lazova, S.; Chervenkov, L.; Peshevska-Sekulovska, M.; Sekulovski, M.; Gulinac, M.; Vasilev, G.V.; Tomov, L.; et al. The End or a New Era of Development of SARS-CoV-2 Virus: Genetic Variants Responsible for Severe COVID-19 and Clinical Efficacy of the Most Commonly Used Vaccines in Clinical Practice. Vaccines 2023, 11, 1181. [Google Scholar] [CrossRef]
- Davies, N.G.; Abbott, S.; Barnard, R.C.; Jarvis, C.I.; Kucharski, A.J.; Munday, J.D.; Pearson, C.A.B.; Russell, T.W.; Tully, D.C.; Washburne, A.D.; et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science 2021, 372, eabg3055. [Google Scholar] [CrossRef]
- Tegally, H.; Wilkinson, E.; Giovanetti, M.; Iranzadeh, A.; Fonseca, V.; Giandhari, J.; Doolabh, D.; Pillay, S.; San, E.J.; Msomi, N.; et al. Detection of a SARS-CoV-2 variant of concern in South Africa. Nature 2021, 592, 438–443. [Google Scholar] [CrossRef]
- Faria, N.R.; Mellan, T.A.; Whittaker, C.; Claro, I.M.; Candido, D.D.S.; Mishra, S.; Crispim, M.A.E.; Sales, F.C.S.; Hawryluk, I.; McCrone, J.T.; et al. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science 2021, 372, 815–821. [Google Scholar] [CrossRef]
- Dhar, M.S.; Marwal, R.; Vs, R.; Ponnusamy, K.; Jolly, B.; Bhoyar, R.C.; Sardana, V.; Naushin, S.; Rophina, M.; Mellan, T.A.; et al. Genomic characterization and epidemiology of an emerging SARS-CoV-2 variant in Delhi, India. Science 2021, 374, 995–999. [Google Scholar] [CrossRef] [PubMed]
- Novelli, G.; Colona, V.L.; Pandolfi, P.P. A focus on the spread of the delta variant of SARS-CoV-2 in India. Indian J. Med. Res. 2021, 153, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Viana, R.; Moyo, S.; Amoako, D.; Tegally, H.; Scheepers, C.; Althaus, C.L.; Anyaneji, U.J.; Bester, P.A.; Boni, M.F.; Chand, M.; et al. Rapid epidemic expansion of the SARSCoV-2 Omicron variant in Southern Africa. Nature 2022, 603, 679–686. [Google Scholar] [CrossRef] [PubMed]
- WHO. Tracking SARS-CoV-2 Variants. Available online: https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/ (accessed on 26 June 2022).
- Romero, P.E.; Dávila-Barclay, A.; Salvatierra, G.; González, L.; Cuicapuza, D.; Solís, L.; Marcos-Carbajal, P.; Huancachoque, J.; Maturrano, L.; Tsukayama, P. The Emergence of SARS-CoV-2 Variant Lambda (C.37) in South America. Microbiol. Spectr. 2021, 9, e0078921. [Google Scholar] [CrossRef] [PubMed]
- Laiton-Donato, K.; Franco-Muñoz, C.; Álvarez-Díaz, D.A.; Ruiz-Moreno, H.A.; Usme-Ciro, J.A.; Prada, D.A.; Reales-González, J.; Corchuelo, S.; Herrera-Sepúlveda, M.T.; Naizaque, J.; et al. Characterization of the emerging B.1.621 variant of interest of SARS-CoV-2. Infect. Genet. Evol. 2021, 95, 105038. [Google Scholar] [CrossRef]
- Warrell, D.A.; Williams, D.J. Clinical aspects of snakebite envenoming and its treatment in low-resource settings. Lancet 2023, 401, 1382–1398. [Google Scholar] [CrossRef]
- Ullas, P.T.; Balachandran, C.; Pathak, N.; Manikrao, Y.P.; Rathod, S.; Pavitrakar, D.V.; Bondre, V.P.; Abraham, P. Case Report: Survival from Clinical Rabies in a Young Child from Maharashtra, India, 2022. Am. J. Trop Med. Hyg. 2023, 109, 1157–1160. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Wong, G.; Zhao, Y.; Wang, H.; He, S.; Bi, Y.; Chen, W.; Jin, H.; Gai, W.; Chu, D.; et al. Treatment with hyperimmune equine immunoglobulin or immunoglobulin fragments completely protects rodents from Ebola virus infection. Sci. Rep. 2016, 6, 24179. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, C.; Qiu, B.; Li, C.; Wang, H.; Jin, H.; Gai, W.; Zheng, X.; Wang, T.; Sun, W.; et al. Passive immunotherapy for Middle East Respiratory Syndrome coronavirus infection with equine immunoglobulin or immunoglobulin fragments in a mouse model. Antiviral Res. 2017, 137, 125–130. [Google Scholar] [CrossRef]
- Theakston, R.D.; Smith, D.C. Antivenoms. BioDrugs 1997, 7, 366–375. [Google Scholar] [CrossRef]
- Andrade, S.A.; Batalha-Carvalho, J.V.; Curi, R.; Wen, F.H.; Covas, D.T.; Chudzinski-Tavassi, A.M.; Moro, A.M. Equine Anti-SARS-CoV-2 Serum (ECIG) Binds to Mutated RBDs and N Proteins of Variants of Concern and Inhibits the Binding of RBDs to ACE-2 Receptor. Front. Immunol. 2022, 13, 871874. [Google Scholar] [CrossRef]
- Pakdemirli, A.; Çalışkan, E.; Hacıoğlu, S.; Danyer, E.; Kardoğan, Ö.; Kurt, Z.E.; Yıldırım, Ö.; Taşkaya, H.; Ündar, B.; Sezgin, Y.; et al. History repeats itself: Horse originated hyperimmune sera production against SARS-CoV-2. Turk. J. Med. Sci. 2021, 51, 2263–2273. [Google Scholar] [CrossRef]
- Cunha, L.E.R.; Stolet, A.A.; Strauch, M.A.; Pereira, V.A.R.; Dumard, C.H.; Gomes, A.M.O.; Monteiro, F.L.; Higa, L.M.; Souza, P.N.C.; Fonseca, J.G.; et al. Polyclonal F(ab’)2 fragments of equine antibodies raised against the spike protein neutralize SARS-CoV-2 variants with high potency. iScience 2021, 24, 103315. [Google Scholar] [CrossRef] [PubMed]
- Zylberman, V.; Sanguineti, S.; Pontoriero, A.V.; Higa, S.; Cerutti, M.L.; Morrone Seijo, S.M.; Pardo, R.; Muñoz, L.; Acuña Intrieri, M.E.; Alzogaray, V.A.; et al. Development of a hyperimmune equine serum therapy for COVID-19 in Argentina. Med. B Aires 2020, 80, 1–6. [Google Scholar]
- Cepeda, M.V.; Jiménez, J.C.; Pujol, F.H.; Rangel, H.R.; Bello, C.; Cubillan, J.; Serrano, M.L.; Chacón, T.; Saba, A.; López, M.A.; et al. Production of equine sera as a potential immunotherapy against COVID-19. Investig. Clin. 2021, 62, 3–17. [Google Scholar] [CrossRef]
- Barbier, M.; Lee, K.S.; Vikharankar, M.S.; Rajpathak, S.N.; Kadam, N.; Wong, T.Y.; Russ, B.P.; Cyphert, H.A.; Miller, O.A.; Rader, N.A.; et al. Passive immunization with equine RBD-specific Fab protects K18-hACE2-mice against Alpha or Beta variants of SARS-CoV-2. Front. Immunol. 2022, 13, 948431. [Google Scholar] [CrossRef]
- Kimber, C.; Valk, S.J.; Chai, K.L.; Piechotta, V.; Iannizzi, C.; Monsef, I.; Wood, E.M.; Lamikanra, A.A.; Roberts, D.J.; McQuilten, Z.; et al. Hyperimmune immunoglobulin for people with COVID-19. Cochrane Database Syst. Rev. 2023, 1, CD015167. [Google Scholar] [PubMed]
- Jaspe, R.C.; Loureiro, C.L.; Sulbaran, Y.; Moros, Z.C.; D’Angelo, P.; Hidalgo, M.; Rodríguez, L.; Alarcón, V.; Aguilar, M.; Sánchez, D.; et al. Description of a One-Year Succession of Variants of Interest and Concern of SARS-CoV-2 in Venezuela. Viruses 2022, 14, 1378. [Google Scholar] [CrossRef]
- Ortega, J.T.; Serrano, M.L.; Suárez, A.; Baptista, J.; Pujol, F.H.; Cavallaro, L.V.; Campos, H.R.; Rangel, H.R. Antiviral activity of flavonoids present in aerial parts of Marcetia taxifolia against Hepatitis B virus, Poliovirus, and Herpes Simplex Virus in vitro. EXCLI J. 2019, 18, 1037–1048. [Google Scholar]
- Wang, W.B.; Ma, Y.B.; Lei, Z.H.; Zhang, X.F.; Li, J.; Li, S.S.; Dong, Z.Y.; Liang, Y.; Li, Q.M.; Su, J.G. Identification of key mutations responsible for the enhancement of receptor-binding affinity and immune escape of SARS-CoV-2 Omicron variant. J. Mol. Graph. Model. 2023, 124, 108540. [Google Scholar] [CrossRef]
- He, Y.; Zhou, Y.; Liu, S.; Kou, Z.; Li, W.; Farzan, M.; Jiang, S. Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: Implication for developing subunit vaccine. Biochem. Biophys. Res. Commun. 2004, 324, 773–781. [Google Scholar] [CrossRef] [PubMed]
- Piccoli, L.; Park, Y.J.; Tortorici, M.A.; Czudnochowski, N.; Walls, A.C.; Beltramello, M.; Silacci-Fregni, C.; Pinto, D.; Rosen, L.E.; Bowen, J.E.; et al. Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology. Cell 2020, 183, 1024–1042.e21. [Google Scholar] [CrossRef] [PubMed]
- Chi, X.; Yan, R.; Zhang, J.; Zhang, G.; Zhang, Y.; Hao, M.; Zhang, Z.; Fan, P.; Dong, Y.; Yang, Y.; et al. N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. Cell 2021, 184, 2332–2347.e16. [Google Scholar]
- VanBlargan, L.A.; Errico, J.M.; Halfmann, P.J.; Zost, S.J.; Crowe, J.E., Jr.; Purcell, L.A.; Kawaoka, Y.; Corti, D.; Fremont, D.H.; Diamond, M.S. An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies. Nat. Med. 2022, 28, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Willett, B.J.; Grove, J.; MacLean, O.A.; Wilkie, C.; De Lorenzo, G.; Furnon, W.; Cantoni, D.; Scott, S.; Logan, N.; Ashraf, S.; et al. SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway. Nat. Microbiol. 2022, 7, 1161–1179. [Google Scholar] [CrossRef]
- Fratev, F. R346K Mutation in the Mu Variant of SARS-CoV-2 Alters the Interactions with Monoclonal Antibodies from Class 2: A Free Energy Perturbation Study. J. Chem. Inf. Model. 2022, 62, 627–631. [Google Scholar] [CrossRef] [PubMed]
- Moreira-Soto, A.; Arguedas, M.; Brenes, H.; Buján, W.; Corrales-Aguilar, E.; Díaz, C.; Echeverri, A.; Flores-Díaz, M.; Gómez, A.; Hernández, A.; et al. High Efficacy of Therapeutic Equine Hyperimmune Antibodies Against SARS-CoV-2 Variants of Concern. Front. Med. 2021, 8, 735853. [Google Scholar] [CrossRef]
- Uriu, K.; Kimura, I.; Shirakawa, K.; Takaori-Kondo, A.; Nakada, T.A.; Kaneda, A.; Nakagawa, S.; Sato, K. Genotype to Phenotype Japan (G2P-Japan) Consortium. Neutralization of the SARS-CoV-2 Mu Variant by Convalescent and Vaccine Serum. N. Engl. J. Med. 2021, 385, 2397–2399. [Google Scholar] [CrossRef]
- Álvarez-Díaz, D.A.; Muñoz, A.L.; Tavera-Rodríguez, P.; Herrera-Sepúlveda, M.T.; Ruiz-Moreno, H.A.; Laiton-Donato, K.; Franco-Muñoz, C.; Pelaez-Carvajal, D.; Cuellar, D.; Muñoz-Suarez, A.M.; et al. Low Neutralizing Antibody Titers against the Mu Variant of SARS-CoV-2 in 31 BNT162b2 Vaccinated Individuals in Colombia. Vaccines 2022, 10, 180. [Google Scholar] [CrossRef]
- Martel, F.; Cuervo-Rojas, J.; Ángel, J.; Ariza, B.; González, J.M.; Ramírez-Santana, C.; Acosta-Ampudia, Y.; Murcia-Soriano, L.; Montoya, N.; Cardozo-Romero, C.C.; et al. Cross-reactive humoral and CD4+ T cell responses to Mu and Gamma SARS-CoV-2 variants in a Colombian population. Front. Immunol. 2023, 14, 1241038. [Google Scholar] [CrossRef]
Week | RBD Dose (µg) | Adjuvant | F(ab′)2 Preparation | F(ab′)2 Concentration (mg/mL) |
---|---|---|---|---|
0 | 100 | Comp. Freund 1 | ||
1 | 200 | Inc. Freund 1 | ||
2 | 300 | PBS 2 | ||
3 | 001 | 14.8 | ||
4 | 600 | PBS | ||
6 | 600 | PBS | ||
7 | 002 3 | 11.2 | ||
10 | 1000 4 | PBS | ||
12 | 1000 4 | PBS | ||
20 | 1000 4 | PBS | ||
26 | 1000 4 | PBS | ||
27 | 003 5 | 11.9 |
Lineage | Variant | Name | GISAID Accession Number | Collection Date |
---|---|---|---|---|
B.1.1.33 | Ancestral | CM1-6AV | EPI_ISL_6980947 | 12 July 2020 |
P1 | Gamma | Dtt54 | EPI_ISL_2628299 | 13 March 2021 |
B.1.621 | Delta | TacMa | EPI_ISL_6976265 | 29 July 2021 |
AY122 | Mu | MirLab4 | EPI_ISL_9486877 | 16 August 2021 |
BA.1.1 | Omicron | CULT-OM | EPI_ISL_17389567 | 11 February 2022 |
F(ab′)2 Preparation 1 | Ancestral | P1 | Variant Delta | Mu | Omicron |
---|---|---|---|---|---|
001 | <1/50 2 | <1/50 | <1/50 | <1/50 | <1/50 |
002 | 1/533 | 1/339 | 1/318 | 1/181 | 1/123 |
003 | 1/18,528 | 1/12,364 | 1/10,071 | 1/7,113 | 1/3,918 |
003 (µg/mL) 3 | 0.64 | 0.96 | 1.18 | 1.67 | 3.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez-Nuñez, M.; Cepeda, M.d.V.; Bello, C.; Lopez, M.A.; Sulbaran, Y.; Loureiro, C.L.; Liprandi, F.; Jaspe, R.C.; Pujol, F.H.; Rangel, H.R. Neutralization of Different Variants of SARS-CoV-2 by a F(ab′)2 Preparation from Sera of Horses Immunized with the Viral Receptor Binding Domain. Antibodies 2023, 12, 80. https://doi.org/10.3390/antib12040080
Rodriguez-Nuñez M, Cepeda MdV, Bello C, Lopez MA, Sulbaran Y, Loureiro CL, Liprandi F, Jaspe RC, Pujol FH, Rangel HR. Neutralization of Different Variants of SARS-CoV-2 by a F(ab′)2 Preparation from Sera of Horses Immunized with the Viral Receptor Binding Domain. Antibodies. 2023; 12(4):80. https://doi.org/10.3390/antib12040080
Chicago/Turabian StyleRodriguez-Nuñez, Mariajosé, Mariana del Valle Cepeda, Carlos Bello, Miguel Angel Lopez, Yoneira Sulbaran, Carmen Luisa Loureiro, Ferdinando Liprandi, Rossana Celeste Jaspe, Flor Helene Pujol, and Héctor Rafael Rangel. 2023. "Neutralization of Different Variants of SARS-CoV-2 by a F(ab′)2 Preparation from Sera of Horses Immunized with the Viral Receptor Binding Domain" Antibodies 12, no. 4: 80. https://doi.org/10.3390/antib12040080
APA StyleRodriguez-Nuñez, M., Cepeda, M. d. V., Bello, C., Lopez, M. A., Sulbaran, Y., Loureiro, C. L., Liprandi, F., Jaspe, R. C., Pujol, F. H., & Rangel, H. R. (2023). Neutralization of Different Variants of SARS-CoV-2 by a F(ab′)2 Preparation from Sera of Horses Immunized with the Viral Receptor Binding Domain. Antibodies, 12(4), 80. https://doi.org/10.3390/antib12040080