Heterogeneity in Disulfide Bond Reduction in IgG1 Antibodies Is Governed by Solvent Accessibility of the Cysteines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Controls
2.1.1. Control 1, Representing Fully Reduced, Denatured Conditions
2.1.2. Control 2, Representing Native Conditions
2.1.3. Control 3, Representing Denatured Conditions
2.1.4. Disulfide Reduction Kinetics in DTT
2.1.5. Reduced Disulfide Levels in the Absence of DTT
2.1.6. Enzymatic Digestion
2.1.7. Mass Spectrometry
2.2. Data Analysis
2.2.1. Selection of Alkylating Reagents
2.2.2. Selection of Controls
2.2.3. Selection of DTT Concentration for Partial Reduction
2.2.4. Molecular Dynamics Simulations
3. Results
3.1. All the mAbs Show a <5% Abundance of Free Sulfhydryl Groups
3.2. Interchain and Hinge–Hinge Disulfide Bonds Are More Susceptible to Reducing Stress
3.3. Estimation of the Cysteine-Specific Reduction Rate Constant
4. Discussions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tsumoto, K.; Isozaki, Y.; Yagami, H.; Tomita, M. Future perspectives of therapeutic monoclonal antibodies. Immunotherapy 2019, 11, 119–127. [Google Scholar] [CrossRef]
- Glockshuber, R.; Schmidt, T.; Pluckthun, A. The disulfide bonds in antibody variable domains: Effects on stability, folding in vitro, and functional expression in Escherichia coli. Biochemistry 1992, 31, 1270–1279. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, F.W.; Stevenson, R.; Li, C.; Salimi-Moosavi, H.; Liu, L.; Wen, J.; Luo, Q.; Daris, K.; Buck, L.; Miller, S.; et al. Engineering an IgG Scaffold Lacking Effector Function with Optimized Developability. J. Biol. Chem. 2017, 292, 1865–1875. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Jacobsen, F.W.; Everds, N.; Zhuang, Y.; Yu, Y.B.; Li, N.; Clark, D.; Nguyen, M.P.; Fort, M.; Narayanan, P.; et al. Biological Characterization of a Stable Effector Functionless (SEFL) Monoclonal Antibody Scaffold in Vitro. J. Biol. Chem. 2017, 292, 1876–1883. [Google Scholar] [CrossRef] [PubMed]
- Lefranc, M.P.; Pommie, C.; Ruiz, M.; Giudicelli, V.; Foulquier, E.; Truong, L.; Thouvenin-Contet, V.; Lefranc, G. IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains. Dev. Comp. Immunol. 2003, 27, 55–77. [Google Scholar] [CrossRef] [PubMed]
- Kabat, E.A.; Wu, T.T.; Perry, H.; Gottesman, K.; Foeller, C. Sequences of Proteins of Immunological Interest, 5th ed.; NIH Publication No. 91-3242; National Institutes of Health: Bethesda, MD, USA, 1991.
- Edelman, G.M.; Cunningham, B.A.; Gall, W.E.; Gottlieb, P.D.; Rutishauser, U.; Waxdal, M.J. The covalent structure of an entire gammaG immunoglobulin molecule. Proc. Natl. Acad. Sci. USA 1969, 63, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Lacy, E.R.; Baker, M.; Brigham-Burke, M. Free sulfhydryl measurement as an indicator of antibody stability. Anal. Biochem. 2008, 382, 66–68. [Google Scholar] [CrossRef] [PubMed]
- Moritz, B.; Stracke, J.O. Assessment of disulfide and hinge modifications in monoclonal antibodies. Electrophoresis 2017, 38, 769–785. [Google Scholar] [CrossRef]
- Li, X.; Xiao, L.; Kochert, B.; Donnelly, D.P.; Gao, X.; Richardson, D. Extended characterization of unpaired cysteines in an IgG1 monoclonal antibody by LC-MS analysis. Anal. Biochem. 2021, 622, 114172. [Google Scholar] [CrossRef]
- Chaderjian, W.B.; Chin, E.T.; Harris, R.J.; Etcheverry, T.M. Effect of copper sulfate on performance of a serum-free CHO cell culture process and the level of free thiol in the recombinant antibody expressed. Biotechnol. Prog. 2005, 21, 550–553. [Google Scholar] [CrossRef]
- Cao, M.; Wang, C.; Chung, W.K.; Motabar, D.; Wang, J.; Christian, E.; Lin, S.; Hunter, A.; Wang, X.; Liu, D. Characterization and analysis of scFv-IgG bispecific antibody size variants. mAbs 2018, 10, 1236–1247. [Google Scholar] [CrossRef]
- Chung, W.K.; Russell, B.; Yang, Y.; Handlogten, M.; Hudak, S.; Cao, M.; Wang, J.; Robbins, D.; Ahuja, S.; Zhu, M. Effects of antibody disulfide bond reduction on purification process performance and final drug substance stability. Biotechnol. Bioeng. 2017, 114, 1264–1274. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Chumsae, C.; Gaza-Bulseco, G.; Hurkmans, K.; Radziejewski, C.H. Ranking the susceptibility of disulfide bonds in human IgG1 antibodies by reduction, differential alkylation, and LC-MS analysis. Anal. Chem. 2010, 82, 5219–5226. [Google Scholar] [CrossRef] [PubMed]
- Xiang, T.; Chumsae, C.; Liu, H. Localization and quantitation of free sulfhydryl in recombinant monoclonal antibodies by differential labeling with 12C and 13C iodoacetic acid and LC-MS analysis. Anal. Chem. 2009, 81, 8101–8108. [Google Scholar] [CrossRef] [PubMed]
- Robotham, A.C.; Kelly, J.F. Detection and quantification of free sulfhydryls in monoclonal antibodies using maleimide labeling and mass spectrometry. mAbs 2019, 11, 757–766. [Google Scholar] [CrossRef] [PubMed]
- Gurjar, S.A.; Wheeler, J.X.; Wadhwa, M.; Thorpe, R.; Kimber, I.; Derrick, J.P.; Dearman, R.J.; Metcalfe, C. The impact of thioredoxin reduction of allosteric disulfide bonds on the therapeutic potential of monoclonal antibodies. J. Biol. Chem. 2019, 294, 19616–19634. [Google Scholar] [CrossRef]
- Metcalfe, C. A Review of Methodologies for the Detection, Quantitation, and Localization of Free Cysteine in Recombinant Proteins: A Focus on Therapeutic Monoclonal Antibodies. Front. Mol. Biosci. 2022, 9, 886417. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, J.; Hewitt, D.; Tran, B.; Gao, X.; Qiu, Z.J.; Tejada, M.; Gazzano-Santoro, H.; Kao, Y.H. Identification and characterization of buried unpaired cysteines in a recombinant monoclonal IgG1 antibody. Anal. Chem. 2012, 84, 7112–7123. [Google Scholar] [CrossRef]
- Wisniewski, J.R.; Zougman, A.; Nagaraj, N.; Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 2009, 6, 359–362. [Google Scholar] [CrossRef]
- Zhang, Z. Large-scale identification and quantification of covalent modifications in therapeutic proteins. Anal. Chem. 2009, 81, 8354–8364. [Google Scholar] [CrossRef]
- MacLean, B.; Tomazela, D.M.; Shulman, N.; Chambers, M.; Finney, G.L.; Frewen, B.; Kern, R.; Tabb, D.L.; Liebler, D.C.; MacCoss, M.J. Skyline: An open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 2010, 26, 966–968. [Google Scholar] [CrossRef] [PubMed]
- Natesan, R.; Agrawal, N.J. IgG1 and IgG4 antibodies sample initial structure dependent local conformational states and exhibit non-identical Fab dynamics. Sci. Rep. 2023, 13, 4791. [Google Scholar] [CrossRef] [PubMed]
- Eastman, P.; Swails, J.; Chodera, J.D.; McGibbon, R.T.; Zhao, Y.; Beauchamp, K.A.; Wang, L.P.; Simmonett, A.C.; Harrigan, M.P.; Stern, C.D.; et al. OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. PLoS Comput. Biol. 2017, 13, e1005659. [Google Scholar] [CrossRef]
- Tian, C.; Kasavajhala, K.; Belfon, K.A.A.; Raguette, L.; Huang, H.; Migues, A.N.; Bickel, J.; Wang, Y.; Pincay, J.; Wu, Q.; et al. ff19SB: Amino-Acid-Specific Protein Backbone Parameters Trained against Quantum Mechanics Energy Surfaces in Solution. J. Chem. Theory Comput. 2020, 16, 528–552. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, G.D.; Cramer, C.J.; Truhlar, D.G. Pairwise solute descreening of solute charges from a dielectric medium. Chem. Phys. Lett. 1995, 246, 122–129. [Google Scholar] [CrossRef]
- McGibbon, R.T.; Beauchamp, K.A.; Harrigan, M.P.; Klein, C.; Swails, J.M.; Hernandez, C.X.; Schwantes, C.R.; Wang, L.P.; Lane, T.J.; Pande, V.S. MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories. Biophys. J. 2015, 109, 1528–1532. [Google Scholar] [CrossRef]
- Shrake, A.; Rupley, J.A. Environment and exposure to solvent of protein atoms. Lysozyme and insulin. J. Mol. Biol. 1973, 79, 351–371. [Google Scholar] [CrossRef]
- Shen, Y.; Zeng, L.; Zhu, A.; Blanc, T.; Patel, D.; Pennello, A.; Bari, A.; Ng, S.; Persaud, K.; Kang, Y.K.; et al. Removal of a C-terminal serine residue proximal to the inter-chain disulfide bond of a human IgG1 lambda light chain mediates enhanced antibody stability and antibody dependent cell-mediated cytotoxicity. mAbs 2013, 5, 418–431. [Google Scholar] [CrossRef]
- Kuninori, T.; Nishiyama, J. Some properties of diastereomers formed in the reactions of N-Ethylmaleimide with biological thiols. Agric. Biol. Chern. 1985, 49, 2453–2454. [Google Scholar]
- Agrawal, N.J.; Dykstra, A.; Yang, J.; Yue, H.; Nguyen, X.; Kolvenbach, C.; Angell, N. Prediction of the Hydrogen Peroxide-Induced Methionine Oxidation Propensity in Monoclonal Antibodies. J. Pharm. Sci. 2018, 107, 1282–1289. [Google Scholar] [CrossRef]
- Qin, M.; Wang, W.; Thirumalai, D. Protein folding guides disulfide bond formation. Proc. Natl. Acad. Sci. USA 2015, 112, 11241–11246. [Google Scholar] [CrossRef] [PubMed]
- Natesan, R.; Agrawal, N.J. Non-covalent Fc-Fab interactions significantly alter internal dynamics of an IgG1 antibody. Sci. Rep. 2022, 12, 9321. [Google Scholar] [CrossRef] [PubMed]
- Saphire, E.O.; Parren, P.W.; Pantophlet, R.; Zwick, M.B.; Morris, G.M.; Rudd, P.M.; Dwek, R.A.; Stanfield, R.L.; Burton, D.R.; Wilson, I.A. Crystal structure of a neutralizing human IGG against HIV-1: A template for vaccine design. Science 2001, 293, 1155–1159. [Google Scholar] [CrossRef]
- Song, Y.; Cai, H.; Tan, Z.; Mussa, N.; Li, Z.J. Mechanistic insights into inter-chain disulfide bond reduction of IgG1 and IgG4 antibodies. Appl. Microbiol. Biotechnol. 2022, 106, 1057–1066. [Google Scholar] [CrossRef]
Disulfide Bond | Cysteine | Abundance (%) Native Condition | Susceptibility | |
---|---|---|---|---|
Native | Denatured | |||
Intrachain | HC:C22 | 20 a [10], <0.5 bc [14], 0.02–0.04 * | 19.7 a [19], 0.37–0.62 # | Low [14] Low [17] Low + |
HC:C96 | 12 a [10], <0.5 bc [14], 0.11–0.25 * | 23.1 a [19], 1.67–3.17 # | ||
HC:C147 | 6.5 a [10], 0.12–0.53 * | 1.49–3.71 # | ||
HC:C203 | 2.4 a [10], 0.01–0.03 * | 0.09–0.35 # | ||
HC:C370 | 6.6 a [10], 0.1–0.22 * | 0.73–3.01 # | ||
HC:C428 | 5.3 a [10], 2–5 bc [16], 0.01–0.03 * | 1.36–2.03 # | ||
LC:C23 | 67 bc [16], 0.15–1.0 * | 1.61–4.95 # | ||
LC:C88 | <1 a [10], 0.03–0.19 * | 0.46–1.38 # | ||
LC:C134 | <1 a [10], 0.01–0.17 * | 0.56–2.12 # | ||
LC:C194 | <1 a [10], 0.17–0.34 * | 1.53–3.55 # | ||
Interchain | LC:C214 | 1.5–2.6 bc [14], <2 bc [16], 0.09–0.68 * | 0.72–4.78 # | High [14] High + |
HC:C223 | 1.5–2.6 bc [14], <2 bc [16] | |||
Hinge | HC:C229 | <2 bc [16], 0.17–0.37 * | 0.59–2.81 # | High [14] High [17] High + |
HC:C232 | <2 bc [16], 0.16–0.39 * | 0.37–3.20 # | ||
SEFL | HC:C295 | 0.24–0.47 * | 0.91–3.85 # | intermediate + |
HC:C305 | 0.07–0.09 * | 0.27–1.68 # |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Natesan, R.; Dykstra, A.B.; Banerjee, A.; Agrawal, N.J. Heterogeneity in Disulfide Bond Reduction in IgG1 Antibodies Is Governed by Solvent Accessibility of the Cysteines. Antibodies 2023, 12, 83. https://doi.org/10.3390/antib12040083
Natesan R, Dykstra AB, Banerjee A, Agrawal NJ. Heterogeneity in Disulfide Bond Reduction in IgG1 Antibodies Is Governed by Solvent Accessibility of the Cysteines. Antibodies. 2023; 12(4):83. https://doi.org/10.3390/antib12040083
Chicago/Turabian StyleNatesan, Ramakrishnan, Andrew B. Dykstra, Akash Banerjee, and Neeraj J. Agrawal. 2023. "Heterogeneity in Disulfide Bond Reduction in IgG1 Antibodies Is Governed by Solvent Accessibility of the Cysteines" Antibodies 12, no. 4: 83. https://doi.org/10.3390/antib12040083
APA StyleNatesan, R., Dykstra, A. B., Banerjee, A., & Agrawal, N. J. (2023). Heterogeneity in Disulfide Bond Reduction in IgG1 Antibodies Is Governed by Solvent Accessibility of the Cysteines. Antibodies, 12(4), 83. https://doi.org/10.3390/antib12040083