Integrating In Silico and In Vitro Tools for Optimized Antibody Development—Design of Therapeutic Anti-oxMIF Antibodies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Prediction Modeling
2.2. Simulation
2.3. Surface Hydrophobicity Calculation
2.4. Immunogenicity Prediction
2.5. MIF and mAb Expression and Purification
2.6. Anti-oxMIF mAb ELISA
2.7. Differential oxMIF-Binding ELISA
2.8. Size-Exclusion Chromatography
2.9. Hydrophobic Interaction Chromatography
2.10. AC-SINS
2.11. X-Ray Crystallography
2.12. Mass Spectrometry
2.13. Writing Assistance Software
3. Results
3.1. In Silico Analysis and Sequence-Optimization to Generate Improved Second Generation Anti-oxMIF mAbs
3.2. Hydrophobicity and Aggregation Potential
3.3. Post-Translational Modifications
3.4. In Silico Immunogenicity Risk Assessment
3.5. Framework Optimization
3.6. Design of Optimized mAb Variants
3.7. In Silico Modeling of Optimized mAb Variants
3.8. Physicochemical Characterization of Sequence-Optimized mAb Variants
3.9. Improvement of Pharmacokinetic (PK) and Biodistribution (BD) Profile of C0083 upon Sequence Optimization
3.10. Analysis of C0083 Crystal Structure to Evaluate the Effects of Selected Mutations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaplon, H.; Crescioli, S.; Chenoweth, A.; Visweswaraiah, J.; Reichert, J.M. Antibodies to watch in 2023. mAbs 2023, 15, 2153410. [Google Scholar] [CrossRef]
- Valldorf, B.; Hinz, S.C.; Russo, G.; Pekar, L.; Mohr, L.; Klemm, J.; Doerner, A.; Krah, S.; Hust, M.; Zielonka, S. Antibody display technologies: Selecting the cream of the crop. Biol. Chem. 2022, 403, 455–477. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Prabakaran, P.; Chen, W.; Zhu, Z.; Feng, Y.; Dimitrov, D.S. Antibody Aggregation: Insights from Sequence and Structure. Antibodies 2016, 5, 19. [Google Scholar] [CrossRef] [PubMed]
- Nabhan, M.; Pallardy, M.; Turbica, I. Immunogenicity of Bioproducts: Cellular Models to Evaluate the Impact of Therapeutic Antibody Aggregates. Front. Immunol. 2020, 11, 725. [Google Scholar] [CrossRef] [PubMed]
- Sormanni, P.; Aprile, F.A.; Vendruscolo, M. Third generation antibody discovery methods: In silico rational design. Chem. Soc. Rev. 2018, 47, 9137–9157. [Google Scholar] [CrossRef] [PubMed]
- Yuan, T.; Li, J.; Zhang, M.Y. A single mutation turns a non-binding germline-like predecessor of broadly neutralizing antibody into a binding antibody to HIV-1 envelope glycoproteins. mAbs 2011, 3, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.-L.; Hu, S.; Lv, C.-J.; Zhao, W.-R.; Wang, H.-P.; Mei, J.-Q.; Mei, L.-H.; Huang, J. A single mutation increases the thermostability and activity of aspergillus terreus amine transaminase. Molecules 2019, 24, 1194. [Google Scholar] [CrossRef] [PubMed]
- Ikeuchi, E.; Kuroda, D.; Nakakido, M.; Murakami, A.; Tsumoto, K. Delicate balance among thermal stability, binding affinity, and conformational space explored by single-domain VHH antibodies. Sci. Rep. 2021, 11, 20624. [Google Scholar] [CrossRef]
- Chiu, M.L.; Goulet, D.R.; Teplyakov, A.; Gilliland, G.L. Antibody Structure and Function: The Basis for Engineering Therapeutics. Antibodies 2019, 8, 55. [Google Scholar] [CrossRef] [PubMed]
- Ruffolo, J.A.; Sulam, J.; Gray, J.J. Antibody structure prediction using interpretable deep learning. Patterns 2022, 3, 100406. [Google Scholar] [CrossRef]
- Regep, C.; Georges, G.; Shi, J.; Popovic, B.; Deane, C.M. The H3 loop of antibodies shows unique structural characteristics. Proteins Struct. Funct. Bioinforma. 2017, 85, 1311–1318. [Google Scholar] [CrossRef] [PubMed]
- Thiele, M.; Donnelly, S.C.; Mitchell, R.A. OxMIF: A druggable isoform of macrophage migration inhibitory factor in cancer and inflammatory diseases. J. Immunother. Cancer 2022, 10, e005475. [Google Scholar] [CrossRef] [PubMed]
- Ferhat, M.; Mangano, K.; Mirkina, I.; Mayer, J.; Rossmueller, G.; Schinagl, A.; Kerschbaumer, R.; Nicoletti, F.; Thiele, M.; Landlinger, C. The newly engineered monoclonal antibody ON104, targeting the oxidized Macrophage Migration Inhibitory Factor (oxMIF), ameliorates clinical and histopathological signs of collagen-induced arthritis. Eur. J. Pharmacol. 2023, 956, 175997. [Google Scholar] [CrossRef]
- Rossmueller, G.; Mirkina, I.; Maurer, B.; Hoeld, V.; Mayer, J.; Thiele, M.; Kerschbaumer, R.J.; Schinagl, A. Preclinical Evaluation of ON203, A Novel Bioengineered mAb Targeting Oxidized Macrophage Migration Inhibitory Factor as an Anticancer Therapeutic. Mol. Cancer Ther. 2023, 22, 555–569. [Google Scholar] [CrossRef] [PubMed]
- Schinagl, A.; Thiele, M.; Douillard, P.; Völkel, D.; Kenner, L.; Kazemi, Z.; Freissmuth, M.; Scheiflinger, F.; Kerschbaumer, R.J. Oxidized macrophage migration inhibitory factor is a potential new tissue marker and drug target in cancer. Oncotarget 2016, 7, 73486–73496. [Google Scholar] [CrossRef]
- Skeens, E.; Gadzuk-Shea, M.; Shah, D.; Bhandari, V.; Schweppe, D.K.; Berlow, R.B.; Lisi, G.P. Redox-dependent structure and dynamics of macrophage migration inhibitory factor reveal sites of latent allostery. Structure 2022, 30, 840–850.e6. [Google Scholar] [CrossRef] [PubMed]
- Thiele, M.; Kerschbaumer, R.J.; Tam, F.W.; Völkel, D.; Douillard, P.; Schinagl, A.; Kühnel, H.; Smith, J.; McDaid, J.P.; Bhangal, G.; et al. Selective Targeting of a Disease-Related Conformational Isoform of Macrophage Migration Inhibitory Factor Ameliorates Inflammatory Conditions. J. Immunol. 2015, 195, 2343–2352. [Google Scholar] [CrossRef]
- Hussain, F.; Freissmuth, M.; Völkel, D.; Thiele, M.; Douillard, P.; Antoine, G.; Thurner, P.; Ehrlich, H.; Schwarz, H.-P.; Scheiflinger, F.; et al. Human Anti-Macrophage Migration Inhibitory Factor Antibodies Inhibit Growth of Human Prostate Cancer Cells In Vitro and In Vivo. Mol. Cancer Ther. 2013, 12, 1223–1234. [Google Scholar] [CrossRef] [PubMed]
- Mahalingam, D.; Patel, M.R.; Sachdev, J.C.; Hart, L.L.; Halama, N.; Ramanathan, R.K.; Sarantopoulos, J.; Völkel, D.; Youssef, A.; de Jong, F.A.; et al. Phase I study of imalumab (BAX69), a fully human recombinant antioxidized macrophage migration inhibitory factor antibody in advanced solid tumours. Br. J. Clin. Pharmacol. 2020, 86, 1836–1848. [Google Scholar] [CrossRef]
- Raybould, M.I.J.; Marks, C.; Krawczyk, K.; Taddese, B.; Nowak, J.; Lewis, A.P.; Bujotzek, A.; Shi, J.; Deane, C.M. Five computational developability guidelines for therapeutic antibody profiling. Proc. Natl. Acad. Sci. USA 2019, 116, 4025–4030. [Google Scholar] [CrossRef] [PubMed]
- Datta-Mannan, A. Mechanisms influencing the pharmacokinetics and disposition of monoclonal antibodies and peptides. Drug Metab. Dispos. 2019, 47, 1100–1110. [Google Scholar] [CrossRef]
- Dobson, C.L.; Devine, P.W.A.; Phillips, J.J.; Higazi, D.R.; Lloyd, C.; Popovic, B.; Arnold, J.; Buchanan, A.; Lewis, A.; Goodman, J.; et al. Engineering the surface properties of a human monoclonal antibody prevents self-association and rapid clearance in vivo. Sci. Rep. 2016, 6, 38644. [Google Scholar] [CrossRef]
- Moussa, E.M.; Panchal, J.P.; Moorthy, B.S.; Blum, J.S.; Joubert, M.K.; Narhi, L.O.; Topp, E.M. Immunogenicity of Therapeutic Protein Aggregates. J. Pharm. Sci. 2016, 105, 417–430. [Google Scholar] [CrossRef] [PubMed]
- Joubert, M.K.; Deshpande, M.; Yang, J.; Reynolds, H.; Bryson, C.; Fogg, M.; Baker, M.P.; Herskovitz, J.; Goletz, T.J.; Zhou, L.; et al. Use of in vitro assays to assess immunogenicity risk of antibody-based biotherapeutics. PLoS ONE 2016, 11, e0159328. [Google Scholar] [CrossRef] [PubMed]
- Abanades, B.; Georges, G.; Bujotzek, A.; Deane, C.M. ABlooper: Fast accurate antibody CDR loop structure prediction with accuracy estimation. Bioinformatics 2022, 38, 1877–1880. [Google Scholar] [CrossRef] [PubMed]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef]
- Schmid, N.; Eichenberger, A.P.; Choutko, A.; Riniker, S.; Winger, M.; Mark, A.E.; van Gunsteren, W.F. Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur. Biophys. J. 2011, 40, 843–856. [Google Scholar] [CrossRef] [PubMed]
- Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126, 14101. [Google Scholar] [CrossRef]
- Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981, 52, 7182–7190. [Google Scholar] [CrossRef]
- Daura, X.; Gademann, K.; Jaun, B.; Seebach, D.; Van Gunsteren, W.F.; Mark, A.E. Peptide folding: When simulation meets experiment. Angew. Chem.-Int. Ed. Engl. 1999, 38, 236–240. [Google Scholar] [CrossRef]
- Black, S.D.; Mould, D.R. Development of hydrophobicity parameters to analyze proteins which bear post- or cotranslational modifications. Anal. Biochem. 1991, 193, 72–82. [Google Scholar] [CrossRef]
- Wang, P.; Sidney, J.; Dow, C.; Mothé, B.; Sette, A.; Peters, B. A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput. Biol. 2008, 4, e1000048. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Sidney, J.; Kim, Y.; Sette, A.; Lund, O.; Nielsen, M.; Peters, B. Peptide binding predictions for HLA DR, DP and DQ molecules. BMC Bioinform. 2010, 11, 568. [Google Scholar] [CrossRef]
- Kerschbaumer, R.J.; Rieger, M.; Völkel, D.; Le Roy, D.; Roger, T.; Garbaraviciene, J.; Boehncke, W.H.; Müllberg, J.; Hoet, R.M.; Wood, C.R.; et al. Neutralization of macrophage migration inhibitory factor (MIF) by fully human antibodies correlates with their specificity for the β-sheet structure of MIF. J. Biol. Chem. 2012, 287, 7446–7455. [Google Scholar] [CrossRef] [PubMed]
- Schinagl, A.; Kerschbaumer, R.J.; Sabarth, N.; Douillard, P.; Scholz, P.; Voelkel, D.; Hollerweger, J.C.; Goettig, P.; Brandstetter, H.; Scheiflinger, F.; et al. Role of the Cysteine 81 Residue of Macrophage Migration Inhibitory Factor as a Molecular Redox Switch. Biochemistry 2018, 57, 1523–1532. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Caffry, I.; Wu, J.; Geng, S.B.; Jain, T.; Sun, T.; Reid, F.; Cao, Y.; Estep, P.; Yu, Y.; et al. High-throughput screening for developability during early-stage antibody discovery using self-interaction nanoparticle spectroscopy. mAbs 2013, 6, 483–492. [Google Scholar] [CrossRef]
- McCarthy, A.A.; Barrett, R.; Beteva, A.; Caserotto, H.; Dobias, F.; Felisaz, F.; Giraud, T.; Guijarro, M.; Janocha, R.; Khadrouche, A.; et al. ID30B—A versatile beamline for macromolecular crystallography experiments at the ESRF. J. Synchrotron Radiat. 2018, 25, 1249–1260. [Google Scholar] [CrossRef]
- Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Liebschner, D.; Afonine, P.V.; Baker, M.L.; Bunkóczi, G.; Chen, V.B.; Croll, T.; Hintze, B.; Hung, L.W.; Jain, S.; McCoy, A.; et al. Macromolecular structure determination using X-rays, neutrons and electrons: Recent developments in Phenix. Acta Crystallogr. Sect. D Struct. Biol. 2019, 75, 861–877. [Google Scholar] [CrossRef] [PubMed]
- Emsley, P.; Lohkamp, B.; Scott, W.G.; Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 486–501. [Google Scholar] [CrossRef]
- French, S.; Wilson, K. On the treatment of negative intensity observations. Acta Crystallogr. Sect. A 1978, 34, 517–525. [Google Scholar] [CrossRef]
- Joosten, R.P.; Salzemann, J.; Bloch, V.; Stockinger, H.; Berglund, A.C.; Blanchet, C.; Bongcam-Rudloff, E.; Combet, C.; Da Costa, A.L.; Deleage, G.; et al. PDB_REDO: Automated re-refinement of X-ray structure models in the PDB. J. Appl. Crystallogr. 2009, 42, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.W.; Gallego, R.A.; Brooun, A.; Gehlhaar, D.; McTigue, M. Reviving B-Factors: Retrospective Normalized B-Factor Analysis of c-ros Oncogene 1 Receptor Tyrosine Kinase and Anaplastic Lymphoma Kinase L1196M with Crizotinib and Lorlatinib. ACS Med. Chem. Lett. 2018, 9, 878–883. [Google Scholar] [CrossRef] [PubMed]
- Schrödinger LLC. The PyMOL Molecular Graphics System; Schrödinger LLC: New York, NY, USA, 2010. [Google Scholar]
- Waibl, F.; Fernández-Quintero, M.L.; Wedl, F.S.; Kettenberger, H.; Georges, G.; Liedl, K.R. Comparison of hydrophobicity scales for predicting biophysical properties of antibodies. Front. Mol. Biosci. 2022, 9, 960194. [Google Scholar] [CrossRef] [PubMed]
- D’angelo, S.; Ferrara, F.; Naranjo, L.; Erasmus, M.F.; Hraber, P.; Bradbury, A.R.M. Many routes to an antibody heavy-chain CDR3: Necessary, yet insufficient, for specific binding. Front. Immunol. 2018, 9, 395. [Google Scholar] [CrossRef]
- Grassi, L.; Cabrele, C. Susceptibility of protein therapeutics to spontaneous chemical modifications by oxidation, cyclization, and elimination reactions. Amin. Acids 2019, 51, 1409–1431. [Google Scholar] [CrossRef] [PubMed]
- Chelius, D.; Render, D.S.; Bondarenko, P.V. Identification and characterization of deamidation sites in the conserved regions of human immunoglobulin gamma antibodies. Anal. Chem. 2005, 77, 6004–6011. [Google Scholar] [CrossRef]
- Gupta, R.; Brunak, S. Prediction of glycosylation across the human proteome and the correlation to protein function. Pac. Symp. Biocomput. 2002, 7, 310–322. [Google Scholar]
- Vlasak, J.; Ionescu, R. Fragmentation of monoclonal antibodies. mAbs 2011, 3, 253–263. [Google Scholar] [CrossRef]
- Paul, S.; Sidney, J.; Sette, A.; Peters, B. TepiTool: A pipeline for computational prediction of T cell epitope candidates. Curr. Protoc. Immunol. 2016, 114, 18.19.1–18.19.24. [Google Scholar] [CrossRef]
- Swindells, M.B.; Porter, C.T.; Couch, M.; Hurst, J.; Abhinandan, K.R.; Nielsen, J.H.; Macindoe, G.; Hetherington, J.; Martin, A.C. abYsis: Integrated Antibody Sequence and Structure-Management, Analysis, and Prediction. J. Mol. Biol. 2017, 429, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Scaviner, D.; Barbié, V.; Ruiz, M.; Lefranc, M.P. Protein Displays of the Human Immunoglobulin Heavy, Kappa and Lambda Variable and Joining Regions. Exp. Clin. Immunogenet. 1999, 16, 234–240. [Google Scholar] [CrossRef]
- Kyte, J.; Doolittle, R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982, 157, 105–132. [Google Scholar] [CrossRef]
- Eisenberg, D.; Schwarz, E.; Komaromy, M.; Wall, R. Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J. Mol. Biol. 1984, 179, 125–142. [Google Scholar] [CrossRef]
- Simm, S.; Einloft, J.; Mirus, O.; Schleiff, E. 50 years of amino acid hydrophobicity scales: Revisiting the capacity for peptide classification. Biol. Res. 2016, 49, 31. [Google Scholar] [CrossRef]
- Hardman, M.J.; Waite, A.; Zeef, L.; Burow, M.; Nakayama, T.; Ashcroft, G.S. Macrophage Migration Inhibitory Factor A Central Regulator of Wound Healing. Am. J. Pathol. 2005, 167, 1561–1574. [Google Scholar] [CrossRef]
- Sumaiya, K.; Langford, D.; Natarajaseenivasan, K.; Shanmughapriya, S. Macrophage migration inhibitory factor (MIF): A multifaceted cytokine regulated by genetic and physiological strategies. Pharmacol. Ther. 2022, 233, 108024. [Google Scholar] [CrossRef] [PubMed]
- Sajko, S.; Skeens, E.; Schinagl, A.; Ferhat, M.; Mirkina, I.; Mayer, J.; Rossmueller, G.; Thiele, M.; Lisi, G.P. Redox-dependent plasticity of oxMIF facilitates its interaction with CD74 and therapeutic antibodies. Redox Biol. 2024, 75, 103264. [Google Scholar] [CrossRef] [PubMed]
- Ko, S.; Jo, M.; Jung, S.T. Recent Achievements and Challenges in Prolonging the Serum Half-Lives of Therapeutic IgG Antibodies Through Fc Engineering. BioDrugs 2021, 35, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Tarazona, A.A.P.; Schinagl, A.; Mirkina, I.; Rossmueller, G.; Kerschbaumer, R.J.; Bachmann, F.; Thiele, M. Pretargeted radioimmunotherapy with the novel anti-oxMIF/HSG bispecific antibody ON105 results in significant tumor regression in murine models of cancer. Mol. Cancer Ther. 2024, 23, 1219–1229. [Google Scholar] [CrossRef] [PubMed]
ID | VL Mutations | VH Mutations | Model ID |
---|---|---|---|
C0008 | wt | wt | |
- | D1A/Q3R/L11F/V15T/M30L/Y36F/F49Y/A51G/P80S/S83F/W93F | L5Q/L11A/G16R/P41S/S49G/R83K/A84T/W97Y/ | Fv-M1 |
1st screen | |||
C0069 | wt | L5Q | Fv-M2 |
C0070 | wt | L5Q/W97Y | Fv-M3 |
C0071 | F49Y/A51G | wt | Fv-M4 |
C0072 | F49Y/A51G/Y36F | wt | Fv-M5 |
C0073 | F49Y/A51G/W93F | wt | Fv-M6 |
C0074 | F49Y/A51G/Y36F/W93F/M30L | wt | Fv-M7 |
C0075 | F49Y/A51G/Y36F/W93F/M30L/P80S | wt | Fv-M8 |
C0076 | F49Y/A51G | L5Q | Fv-M9 |
C0077 | F49Y/A51G/Y36F | L5Q | Fv-M10 |
C0078 | F49Y/A51G/W93F | L5Q | Fv-M11 |
C0079 | F49Y/A51G/Y36F/W93F/M30L | L5Q | Fv-M12 |
C0080 | F49Y/A51G/Y36F/W93F/M30L/P80S | L5Q | Fv-M13 |
C0081 | F49Y/A51G | L5Q/W97Y | Fv-M14 |
C0082 | F49Y/A51G/Y36F | L5Q/W97Y | Fv-M15 |
C0083 | F49Y/A51G/W93F | L5Q/W97Y | Fv-M16 |
C0084 | F49Y/A51G/Y36F/W93F/M30L | L5Q/W97Y | Fv-M17 |
C0085 | F49Y/A51G/Y36F/W93F/M30L/P80S | L5Q/W97Y | Fv-M18 |
2nd screen | |||
C0090 | F49Y/A51G/W93F/M30L/P80S | L5Q/W97Y | Fv-M19 |
C0209 | W93F/L11F/V15T/ | W97Y/ L11A | Fv-M20 |
C0210 | W93F | W97Y/ G16R/S49A | Fv-M21 |
C0211 | F49Y/A51G/W93F/ D1A/Q3R/L11F/V15T | L5Q/W97Y/ S49G/P41S/R83K/A84T | Fv-M22 |
C0212 | W93F/S83F | W97Y | Fv-M23 |
C0213 | W93F | W97Y | Fv-M24 |
C0214 | F49Y/A51G/W93F | L5Q/W97Y/ S49G/P41S/R83K/A84T | Fv-M25 |
C0216 | F49Y/A51G/W93F/ D1A/Q3R/L11F/V15T | L5Q/W97Y | Fv-M26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossmueller, G.; Mirkina, I.; Thiele, M.; Puchol Tarazona, A.; Rueker, F.; Kerschbaumer, R.J.; Schinagl, A. Integrating In Silico and In Vitro Tools for Optimized Antibody Development—Design of Therapeutic Anti-oxMIF Antibodies. Antibodies 2024, 13, 104. https://doi.org/10.3390/antib13040104
Rossmueller G, Mirkina I, Thiele M, Puchol Tarazona A, Rueker F, Kerschbaumer RJ, Schinagl A. Integrating In Silico and In Vitro Tools for Optimized Antibody Development—Design of Therapeutic Anti-oxMIF Antibodies. Antibodies. 2024; 13(4):104. https://doi.org/10.3390/antib13040104
Chicago/Turabian StyleRossmueller, Gregor, Irina Mirkina, Michael Thiele, Alejandro Puchol Tarazona, Florian Rueker, Randolf J. Kerschbaumer, and Alexander Schinagl. 2024. "Integrating In Silico and In Vitro Tools for Optimized Antibody Development—Design of Therapeutic Anti-oxMIF Antibodies" Antibodies 13, no. 4: 104. https://doi.org/10.3390/antib13040104
APA StyleRossmueller, G., Mirkina, I., Thiele, M., Puchol Tarazona, A., Rueker, F., Kerschbaumer, R. J., & Schinagl, A. (2024). Integrating In Silico and In Vitro Tools for Optimized Antibody Development—Design of Therapeutic Anti-oxMIF Antibodies. Antibodies, 13(4), 104. https://doi.org/10.3390/antib13040104