Phenomenological Modeling of Antibody Response from Vaccine Strain Composition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Overview
2.2. Sequence Coordinate Notation
2.3. Distance to Average Strain IgG Model
2.4. Model Parameter Optimization
2.5. Principal Component Analysis
3. Results
3.1. Influenza Results
3.2. Coronavirus Results
3.3. mRNA Influenza Vaccine
3.4. Application to Vaccine Efficacy Prediction
4. Concluding Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Erbelding, E.; Post, D.; Stemmy, E.; Roberts, P.; Augustine, A.; Ferguson, S.; Paules, C.; Graham, B.; Fauci, A. A Universal Influenza Vaccine: The Strategic Plan for the National Institute of Allergy and Infectious Diseases. J. Infect. Dis. 2018, 218, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.R.; Kim, S.S.; Kondor, R.J.; Smith, C.; Budd, A.P.; Tartof, S.Y.; Florea, A.; Talbot, H.K.; Grijalva, C.G.; Wernli, K.J. Interim Estimates of 2021–22 Seasonal Influenza Vaccine Effectiveness–United States, February 2022. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 365–370. [Google Scholar] [CrossRef]
- Achaiah, N.C.; Subbarajasetty, S.B.; Shetty, R.M. R0 and Re of COVID-19: Can We Predict When the Pandemic Outbreak Will Be Contained? Indian J. Crit. Care Med. 2020, 24, 1125–1127. [Google Scholar] [CrossRef]
- Subbarao, K. The Success of SARS-CoV-2 Vaccines and Challenges Ahead. Cell Host Microbe 2021, 29, 1111–1123. [Google Scholar] [CrossRef]
- Corbett, K.S.; Edwards, D.K.; Leist, S.R.; Abiona, O.M.; Boyoglu-Barnum, S.; Gillespie, R.A.; Himansu, S.; Schäfer, A.; Ziwawo, C.T.; DiPiazza, A.T.; et al. SARS-CoV-2 MRNa Vaccine Design Enabled by Prototype Pathogen Preparedness. Nature 2020, 586, 567–571. [Google Scholar] [CrossRef]
- Arunachalam, P.S.; Scott, M.K.; Hagan, T.; Li, C.; Feng, Y.; Wimmers, F.; Grigoryan, L.; Trisal, M.; Edara, V.V.; Lai, L.; et al. Systems Vaccinology of the BNT162b2 MRNa Vaccine in Humans. Nature 2021, 596, 410–416. [Google Scholar] [CrossRef]
- Greaney, A.J.; Starr, T.N.; Gilchuk, P.; Zost, S.J.; Binshtein, E.; Loes, A.N.; Hilton, S.K.; Huddleston, J.; Eguia, R.; Crawford, K.H.; et al. Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain That Escape Antibody Recognition. Cell Host Microbe 2021, 29, 44–57.e9. [Google Scholar] [CrossRef]
- Andrews, N.; Stowe, J.; Kirsebom, F.; Toffa, S.; Rickeard, T.; Gallagher, E.; Gower, C.; Kall, M.; Groves, N.; O’Connell, A.M.; et al. COVID-19 Vaccine Effectiveness Against the Omicron (B.1.1.529) Variant. N. Engl. J. Med. 2022, 386, 1532–1546. [Google Scholar] [CrossRef]
- Liu, Y.; Rocklöv, J. The Reproductive Number of the Delta Variant of SARS-CoV-2 Is Far Higher Compared to the Ancestral SARS-CoV-2 Virus. J. Travel Med. 2021, 28, taab124. [Google Scholar] [CrossRef]
- HIV AIDS Asia Pacific Research Statistical Data Information Resources AIDS Data Hub. UNAIDS Data Reference 2021. Available online: https://www.aidsdatahub.org/resource/unaids-data-2021 (accessed on 29 November 2024).
- Burton, D.R.; Desrosiers, R.C.; Doms, R.W.; Feinberg, M.B.; Gallo, R.C.; Hahn, B.; Hoxie, J.A.; Hunter, E.; Korber, B.; Landay, A.; et al. A Sound Rationale Needed for Phase III HIV-1 Vaccine Trials. Science 2004, 303, 316. [Google Scholar] [CrossRef]
- Corti, D.; Cameroni, E.; Guarino, B.; Kallewaard, N.; Zhu, Q.; Lanzavecchia, A. Tackling Influenza with Broadly Neutralizing Antibodies. Curr. Opin. Virol. 2017, 24, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Mu, Z.; Haynes, B.; Cain, D. Strategies for Eliciting Multiple Lineages of Broadly Neutralizing Antibodies to HIV by Vaccination. Curr. Opin. Virol. 2021, 51, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Ellebedy, A.; Krammer, F.; Li, G.; Miller, M.; Chiu, C.; Wrammert, J.; Chang, C.; Davis, C.; McCausland, M.; Elbein, R.; et al. Induction of Broadly Cross-Reactive Antibody Responses to the Influenza Ha Stem Region Following H5N1 Vaccination in Humans. Proc. Natl. Acad. Sci. USA 2014, 111, 13133–13138. [Google Scholar] [CrossRef]
- Carter, D.; Darby, C.; Lefoley, B.; Crevar, C.; Alefantis, T.; Oomen, R.; Anderson, S.; Strugnell, T.; Cortés-Garcia, G.; Vogel, T.; et al. Design and Characterization of a Computationally Optimized Broadly Reactive Hemagglutinin Vaccine for H1N1 Influenza Viruses. J. Virol. 2016, 90, 4720–4734. [Google Scholar] [CrossRef]
- Shaffer, J.; Moore, P.; Kardar, M.; Chakraborty, A. Optimal Immunization Cocktails Can Promote Induction of Broadly Neutralizing Abs Against Highly Mutable Pathogens. Proc. Natl. Acad. Sci. USA 2016, 113, E7039–E7048. [Google Scholar] [CrossRef]
- Ives, S.; Bürckert, J.P.; Pettus, C.; Peñate, K.; Hovde, R.; Bayless, N.; Shanghavi, D.; Glanville, K.; Calgua, E.; Youssef, S.; et al. A General Solution to Broad-Spectrum Vaccine Design for Rapidly Mutating Viruses. Res. Sq. 2021. submitted. [Google Scholar] [CrossRef]
- Kanekiyo, M.; Joyce, M.; Gillespie, R.; Gallagher, J.; Andrews, S.; Yassine, H.; Wheatley, A.; Fisher, B.; Ambrozak, D.; Creanga, A.; et al. Mosaic Nanoparticle Display of Diverse Influenza Virus Hemagglutinins Elicits Broad B Cell Responses. Nat. Immunol. 2019, 20, 362–372. [Google Scholar] [CrossRef]
- Boyoglu-Barnum, S.; Hutchinson, G.; Boyington, J.; Moin, S.; Gillespie, R.; Tsybovsky, Y.; Stephens, T.; Vaile, J.; Lederhofer, J.; Corbett, K.; et al. Glycan Repositioning of Influenza Hemagglutinin Stem Facilitates the Elicitation of Protective Cross-Group Antibody Responses. Nat. Commun. 2020, 11, 791. [Google Scholar] [CrossRef]
- Cohen, A.; Yang, Z.; Gnanapragasam, P.; Ou, S.; Dam, K.; Wang, H.; Bjorkman, P. Construction, Characterization, and Immunization of Nanoparticles That Display a Diverse Array of Influenza Ha Trimers. PLoS ONE 2021, 16, e0247963. [Google Scholar] [CrossRef]
- Cohen, A.; Gnanapragasam, P.; Lee, Y.; Hoffman, P.; Ou, S.; Kakutani, L.; Keeffe, J.; Wu, H.; Howarth, M.; West, A.; et al. Mosaic Nanoparticles Elicit Cross-Reactive Immune Responses to Zoonotic Coronaviruses in Mice. Science 2021, 371, 735–741. [Google Scholar] [CrossRef]
- Robert, P.; Marschall, A.; Meyer-Hermann, M. Induction of Broadly Neutralizing Antibodies in Germinal Centre Simulations. Curr. Opin. Biotechnol. 2018, 51, 137–145. [Google Scholar] [CrossRef]
- Wang, S.; Mata-Fink, J.; Kriegsman, B.; Hanson, M.; Irvine, D.; Eisen, H.; Burton, D.; Wittrup, K.; Kardar, M.; Chakraborty, A. Manipulating the Selection Forces During Affinity Maturation to Generate Cross-Reactive HIV Antibodies. Cell 2015, 160, 785–797. [Google Scholar] [CrossRef] [PubMed]
- Ovchinnikov, V.; Karplus, M. A Coarse-Grained Model of Affinity Maturation Indicates the Importance of B-Cell Receptor Avidity in Epitope Subdominance. Front. Immunol. 2022, 13, 816634. [Google Scholar] [CrossRef]
- Wang, S. Optimal Sequential Immunization Can Focus Antibody Responses Against Diversity Loss and Distraction. PLoS Comput. Biol. 2017, 13, e1005336. [Google Scholar] [CrossRef]
- Robert, P.; Arulraj, T.; Meyer-Hermann, M. Ymir: A 3D Structural Affinity Model for Multi-Epitope Vaccine Simulations. iScience 2021, 24, 102979. [Google Scholar] [CrossRef]
- Conti, S.; Ovchinnikov, V.; Chakraborty, A.; Karplus, M.; Sprenger, K. Multiscale Affinity Maturation Simulations to Elicit Broadly Neutralizing Antibodies Against HIV. PLoS Comput. Biol. 2022, 18, e1009391. [Google Scholar] [CrossRef]
- Corbett, K.; Moin, S.; Yassine, H.; Cagigi, A.; Kanekiyo, M.; Boyoglu-Barnum, S.; Myers, S.; Tsybovsky, Y.; Wheatley, A.; Schramm, C.; et al. Design of Nanoparticulate Group 2 Influenza Virus Hemagglutinin Stem Antigens That Activate Unmutated Ancestor B Cell Receptors of Broadly Neutralizing Antibody Lineages. mBio 2019, 10, 10-1128. [Google Scholar] [CrossRef]
- Ovchinnikov, V.; Louveau, J.; Barton, J.; Karplus, M.; Chakraborty, A. Role of Framework Mutations and Antibody Flexibility in the Evolution of Broadly Neutralizing Antibodies. eLife 2018, 7, e33038. [Google Scholar] [CrossRef] [PubMed]
- Nanni, L.; Lumini, A. A New Encoding Technique for Peptide Classification. Expert Syst. Appl. 2011, 38, 3185–3191. [Google Scholar] [CrossRef]
- Grantham, R. Amino Acid Difference Formula to Help Explain Protein Evolution. Science 1974, 185, 862–864. [Google Scholar] [CrossRef]
- Atchley, W.; Zhao, J.; Fernandes, A.; Drüke, T. Solving the Protein Sequence Metric Problem. Proc. Natl. Acad. Sci. USA 2005, 102, 6395–6400. [Google Scholar] [CrossRef] [PubMed]
- Mei, H.; Liao, Z.; Zhou, Y.; Li, S. A New Set of Amino Acid Descriptors and Its Application in Peptide QSARs. Biopolymers 2005, 80, 775–786. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Zeng, H.; Mueller, J.; Carter, B.; Wang, Z.; Schilz, J.; Horny, G.; Birnbaum, M.; Ewert, S.; Gifford, D. Antibody Complementarity Determining Region Design Using High-Capacity Machine Learning. Bioinformatics 2020, 36, 2126–2133. [Google Scholar] [CrossRef] [PubMed]
- MATLAB. Version 7.10.0 (R2010a); The MathWorks Inc.: Natick, MA, USA, 2010. [Google Scholar]
- Eaton, J.W.; Bateman, D.; Hauberg, S.; Wehbring, R. GNU Octave Version 6.3.0 Manual: A High-Level Interactive Language for Numerical Computations. 2020. Available online: https://docs.octave.org/octave-6.3.0.pdf (accessed on 29 November 2024).
- Humphrey, W.; Dalke, A.; Schulten, K. VMD—Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Bao, Y.; Bolotov, P.; Dernovoy, D.; Kiryutin, B.; Zaslavsky, L.; Tatusova, T.; Ostell, J.; Lipman, D. The Influenza Virus Resource at the National Center for Biotechnology Information. J. Virol. 2008, 82, 596–601. [Google Scholar] [CrossRef]
- Xu, R.; Ekiert, D.; Krause, J.; Hai, R.; Crowe, J.; Wilson, I. Structural Basis of Preexisting Immunity to the 2009 H1N1 Pandemic Influenza Virus. Science 2010, 328, 357–360. [Google Scholar] [CrossRef]
- Watanabe, A.; McCarthy, K.; Kuraoka, M.; Schmidt, A.; Adachi, Y.; Onodera, T.; Tonouchi, K.; Caradonna, T.; Bajic, G.; Song, S.; et al. Antibodies to a Conserved Influenza Head Interface Epitope Protect by an IgG Subtype-Dependent Mechanism. Cell 2019, 177, 1124–1135.e16. [Google Scholar] [CrossRef]
- Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 2020, 181, 281–292.e6. [Google Scholar] [CrossRef]
- Barnes, C.; West, A.; Huey-Tubman, K.; Hoffmann, M.; Sharaf, N.; Hoffman, P.; Koranda, N.; Gristick, H.; Gaebler, C.; Muecksch, F.; et al. Structures of Human Antibodies Bound to SARS-CoV-2 Spike Reveal Common Epitopes and Recurrent Features of Antibodies. Cell 2020, 182, 828–842. [Google Scholar] [CrossRef]
- Hansen, J.; Baum, A.; Pascal, K.; Russo, V.; Giordano, S.; Wloga, E.; Fulton, B.; Yan, Y.; Koon, K.; Patel, K.; et al. Studies in Humanized Mice and Convalescent Humans Yield a SARS-CoV-2 Antibody Cocktail. Science 2020, 369, 1010–1014. [Google Scholar] [CrossRef]
- Arevalo, C.; Bolton, M.; Le Sage, V.; Ye, N.; Furey, C.; Muramatsu, H.; Alameh, M.; Pardi, N.; Drapeau, E.; Parkhouse, K.; et al. A Multivalent Nucleoside-Modified MRNa Vaccine Against All Known Influenza Virus Subtypes. Science 2022, 378, 899–904. [Google Scholar] [CrossRef] [PubMed]
- Jiménezm, J.; Škalič, M.; Martínez-Rosell, G.; De Fabritiis, G. KDEEP: Protein–Ligand Binding Affinity Prediction Via 3D-Convolutional Neural Networks. J. Chem. Inf. Model. 2018, 58, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Feinberg, E.; Sur, D.; Wu, Z.; Husic, B.; Mai, H.; Li, Y.; Sun, S.; Yang, J.; Ramsundar, B.; Pande, V. PotentialNet for Molecular Property Prediction. ACS Cent. Sci. 2018, 4, 1520–1530. [Google Scholar] [CrossRef] [PubMed]
- Ruffolo, J.; Sulam, J.; Gray, J. Antibody Structure Prediction Using Interpretable Deep Learning. Patterns 2022, 3, 100406. [Google Scholar] [CrossRef]
- Nachbagauer, R.; Choi, A.; Hirsh, A.; Margine, I.; Iida, S.; Barrera, A.; Ferres, M.; Albrecht, R.; García-Sastre, A.; Bouvier, N.; et al. Defining the Antibody Cross-Reactome Directed Against the Influenza Virus Surface Glycoproteins. Nat. Immunol. 2017, 18, 464–473. [Google Scholar] [CrossRef]
- Murphy, K. Janeway’s Immunobiology, 8th ed.; Garland Science: New York, NY, USA, 2012. [Google Scholar]
- Conti, S.; Kaczorowski, K.; Song, G.; Porter, K.; Andrabi, R.; Burton, D.; Chakraborty, A.; Karplus, M. Design of Immunogens to Elicit Broadly Neutralizing Antibodies Against HIV Targeting the CD4 Binding Site. Proc. Natl. Acad. Sci. USA 2021, 118, e2018338118. [Google Scholar] [CrossRef]
- Seaman, M.; Janes, H.; Hawkins, N.; Grandpre, L.; Devoy, C.; Giri, A.; Coffey, R.; Harris, L.; Wood, B.; Daniels, M.; et al. Tiered Categorization of a Diverse Panel of HIV-1 Env Pseudoviruses for Assessment of Neutralizing Antibodies. J. Virol. 2010, 84, 1439–1452. [Google Scholar] [CrossRef]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.; Bambrick, J.; et al. Accurate Structure Prediction of Biomolecular Interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef]
- Krishna, R.; Wang, J.; Ahern, W.; Sturmfels, P.; Venkatesh, P.; Kalvet, I.; Lee, G.; Morey-Burrows, F.; Anishchenko, I.; Humphreys, I.; et al. Generalized Biomolecular Modeling and Design with RoseTTAFold All-Atom. Science 2024, 384, eadl2528. [Google Scholar] [CrossRef]
- Elnaggar, A.; Heinzinger, M.; Dallago, C.; Rehawi, G.; Wang, Y.; Jones, L.; Gibbs, T.; Feher, T.; Angerer, C.; Steinegger, M.; et al. ProtTrans: Toward Understanding the Language of Life Through Self-Supervised Learning. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 7112–7127. [Google Scholar] [CrossRef]
- Lin, Z.; Akin, H.; Rao, R.; Hie, B.; Zhu, Z.; Lu, W.; Smetanin, N.; Verkuil, R.; Kabeli, O.; Shmueli, Y.; et al. Evolutionary-Scale Prediction of Atomic-Level Protein Structure with a Language Model. Science 2023, 379, 1123–1130. [Google Scholar] [CrossRef]
- Arevalo, C.; Le Sage, V.; Bolton, M.; Eilola, T.; Jones, J.; Kormuth, K.; Nturibi, E.; Balmaseda, A.; Gordon, A.; Lakdawala, S.; et al. Original Antigenic Sin Priming of Influenza Virus Hemagglutinin Stalk Antibodies. Proc. Natl. Acad. Sci. USA 2020, 117, 17221–17227. [Google Scholar] [CrossRef] [PubMed]
D | |||||
---|---|---|---|---|---|
Influenza-np | 1 | 4 | 0.015–0.03 | 0.49 | 3000 |
Coronavirus-np | 1 | 5 | 0.02–0.04 | 0.3 | 3000 |
Influenza-mRNA | 1.4 | 9 | 0.01 | 0.2 | 4000 |
ABBREVIATION | STRAIN NAME | ACCESSION CODE | V1 | V2 | V4 | V8 |
---|---|---|---|---|---|---|
C09 | A/California/04/2009(H1N1) | ACS45035 | ✓ | ✓ | ✓ | ✓ |
V04 | A/Viet Nam/1203/2004 | AAW80717.1 | – | – | ✓ | ✓ |
J57 | A/Japan/305/1957(H2N2) | AAA43185.1 | – | – | – | ✓ |
HK99 | A/guinea fowl/Hong Kong/WF10/99 | AAO46082.1 | – | – | – | ✓ |
AI68 | A/Aichi/2/1968 | AAA43178.1 | – | ✓ | ✓ | ✓ |
SH13 | A/Shanghai/1/2013 | EPI439486 | – | – | ✓ | ✓ |
JX13 | A/Jiangxi/IPB13/2013(H10N8) | AHK10761 | – | – | – | ✓ |
HB09 | A/swine/HuBei/06/2009(H4N1) | AFV33926 | – | – | – | ✓ |
P10 | A/flat-faced bat/Peru/033/2010 | AGX84934.1 | – | – | – | – |
WA79 | A/wedge-tailed shearwater/Western Australia/2576/1979 | ABB88138.1 | – | – | – | – |
NAME | ACCESSION CODE | HOST | V1 | V4A | V4B | V8 |
---|---|---|---|---|---|---|
SARS-2 | MN985325.1 | human | ✓ | ✓ | – | ✓ |
RaTG13 | QHR63300 | bat | – | ✓ | – | ✓ |
SHC014 | KC881005 | bat | – | ✓ | – | ✓ |
Rs4081 | KY417143 | bat | – | ✓ | – | ✓ |
Pang17 | QIA48632 | pangolin | – | – | ✓ | ✓ |
RmYN02 | EPI_ISL_412977 | bat | – | – | ✓ | ✓ |
Rf1 | DQ412042 | bat | – | – | ✓ | ✓ |
WIV1 | KF367457 | bat | – | – | ✓ | ✓ |
SARS | AAP13441.1 | human | – | – | – | – |
Yun11 | JX993988 | bat | – | – | – | – |
BM-4831 | NC_014470 | bat | – | – | – | – |
BtKY72 | KY352407 | bat | – | – | – | – |
Enc-Type | (m ± sd) | (m ± sd) | (m ± sd) | (m ± sd) | (min/max/avg) | ||
I. Train/test split by antigen | |||||||
Gr-mosaic | 0.91 ± 0.03 | 0.84 ± 0.05 | 0.92 ± 0.03 | 0.85 ± 0.05 | N/A | N/A | |
At-mosaic | 0.91 ± 0.03 | 0.74 ± 0.13 | 0.91 ± 0.03 | 0.78 ± 0.09 | N/A | N/A | |
Gr-np-mix | 0.77 ± 0.06 | 0.66 ± 0.11 | 0.73 ± 0.07 | 0.65 ± 0.15 | N/A | N/A | |
II. Train/test split by vaccine | |||||||
Gr-mosaic | 0.92 ± 0.04 | 0.84 ± 0.10 | 0.92 ± 0.03 | 0.86 ± 0.07 | N/A | N/A | |
At-mosaic | 0.93 ± 0.03 | 0.77 ± 0.11 | 0.90 ± 0.03 | 0.78 ± 0.11 | N/A | N/A | |
Gr-np-mix | 0.85 ± 0.20 | 0.71 ± 0.19 | 0.78 ± 0.19 | 0.70 ± 0.19 | N/A | N/A | |
III. With a “holdout” set (V8) | |||||||
Gr-mosaic | 0.92 ± 0.02 | 0.74 ± 0.07 | 0.92 ± 0.04 | 0.70 ± 0.09 | 0.79 () | 0.73 () | |
At-mosaic | 0.92 ± 0.02 | 0.71 ± 0.11 | 0.88 ± 0.05 | 0.69 ± 0.13 | 0.77 () | 0.71 () | |
Gr-np-mix | 0.90 ± 0.04 | 0.62 ± 0.09 | 0.66 ± 0.12 | 0.53 ± 0.14 | 0.70 () | 0.63 () |
(m ± sd) | (m ± sd) | (m ± sd) | (m ± sd) | (min/max/avg) | ||
---|---|---|---|---|---|---|
I. Train/test split by antigen | ||||||
0.86 ± 0.04 | 0.59 ± 0.13 | 0.84 ± 0.06 | 0.56 ± 0.13 | N/A | N/A | |
II. Train/test split by vaccine | ||||||
0.89 ± 0.03 | 0.65 ± 0.16 | 0.84 ± 0.12 | 0.64 ± 0.16 | N/A | N/A | |
III. With a “holdout” set (V8) | ||||||
0.87 ± 0.04 | 0.68 ± 0.12 | 0.86 ± 0.04 | 0.63 ± 0.15 | 0.80 () | 0.83 () |
(m ± sd) | (m ± sd) | (m ± sd) | (m ± sd) | (min/max/avg) |
---|---|---|---|---|
I. Train/test split by antigen | ||||
0.95 ± 0.02 | 0.89 ± 0.06 | 0.89 ± 0.03 | 0.86 ± 0.05 | |
II. Train/test split by vaccine | ||||
0.96 ± 0.03 | 0.58 ± 0.5 | 0.83 ± 0.05 | 0.52 ± 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ovchinnikov, V.; Karplus, M. Phenomenological Modeling of Antibody Response from Vaccine Strain Composition. Antibodies 2025, 14, 6. https://doi.org/10.3390/antib14010006
Ovchinnikov V, Karplus M. Phenomenological Modeling of Antibody Response from Vaccine Strain Composition. Antibodies. 2025; 14(1):6. https://doi.org/10.3390/antib14010006
Chicago/Turabian StyleOvchinnikov, Victor, and Martin Karplus. 2025. "Phenomenological Modeling of Antibody Response from Vaccine Strain Composition" Antibodies 14, no. 1: 6. https://doi.org/10.3390/antib14010006
APA StyleOvchinnikov, V., & Karplus, M. (2025). Phenomenological Modeling of Antibody Response from Vaccine Strain Composition. Antibodies, 14(1), 6. https://doi.org/10.3390/antib14010006