Expression of DOCK9 and DOCK11 Analyzed with Commercial Antibodies: Focus on Regulation of Mutually Exclusive First Exon Isoforms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Transient Transfections
2.3. qRT-PCR
2.4. Western Blot Analysis
2.5. Statistical Analysis
3. Results
3.1. Expression of Mutually Exclusive First Exon Isoforms of DOCK9 in Human Tissues
3.2. Expression of Mutually Exclusive First Exon Isoforms of DOCK9 in Human Cell Lines
3.3. Protein Expression of DOCK9 in Human Cell Lines
3.4. Expression of DOCK11 mRNA in Human Tissues and Cell Lines
3.5. Protein Expression of DOCK11 in Human Cell Lines
4. Discussion
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Meller, N.; Merlot, S.; Guda, C. CZH proteins: A new family of Rho-GEFs. J. Cell Sci. 2005, 118, 4937–4946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishikimi, A.; Kukimoto-Niino, M.; Yokoyama, S.; Fukui, Y. Immune regulatory functions of DOCK family proteins in health and disease. Exp. Cell Res. 2013, 319, 2343–2349. [Google Scholar] [CrossRef] [PubMed]
- Gadea, G.; Blangy, A. Dock-family exchange factors in cell migration and disease. Eur. J. Cell Biol. 2014, 93, 466–477. [Google Scholar] [CrossRef] [PubMed]
- Meller, N.; Irani-Therani, M.; Kiosses, W.B.; Del Pozo, M.A.; Schwartz, M.A. Zizimin1, a novel Cdc42 activator, reveals a new GEF domain for Rho proteins. Nat. Cell Biol. 2002, 4, 4639–4647. [Google Scholar] [CrossRef] [PubMed]
- Nishikimi, A.; Meller, N.; Uekawa, N.; Isobe, K.; Schwartz, M.A.; Maruyama, M. Zizimin2: A novel, Dock180-related guanine nucleotide exchange factor expressed predominantly in lymphocytes. FEBS Lett. 2005, 579, 1039–1046. [Google Scholar] [CrossRef] [Green Version]
- Lin, Q.; Yang, W.; Baird, D.; Feng, Q.; Cerione, R.A. Identification of a DOCK180-related guanine nucleotide-exchange factor that is capable of mediating a positive feedback activation of Cdc42. J. Biol. Chem. 2006, 281, 35253–35262. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Lafuente, N.; Alcaraz-García, M.J.; García-Serna, A.M.; Sebastián-Ruiz, S.; Moya-Quiles, M.R.; García-Alonso, A.M.; Parrado, A. Dock10, a Cdc42 and Rac1 GEF, induces loss of elongation, filopodia, and ruffles in cervical cancer epithelial HeLa cells. Biol. Open 2015, 4, 627–635. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Lafuente, N.; Minguela, A.; Parrado, A. DOCK9 induces membrane ruffles and Rac1 activity in cancer HeLa epithelial cells. Biochem. Biophys. Rep. 2018, 14, 178–181. [Google Scholar] [CrossRef]
- Yelo, E.; Bernardo, M.V.; Gimeno, L.; Alcaraz-García, M.J.; Majado, M.J.; Parrado, A. Dock10, a novel CZH protein specifically induced by IL4 in B lymphocytes. Mol. Immunol. 2008, 45, 3411–3418. [Google Scholar] [CrossRef]
- O’Leary, N.A.; Wright, M.W.; Brister, J.R.; Ciufo, S.; Haddad, D.; McVeigh, R.; Rajput, B.; Robbertse, B.; Smith-White, B.; Ako-Adjei, D.; et al. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016, 44, D733–D745. [Google Scholar] [CrossRef] [Green Version]
- Martinez, N.M.; Lynch, K.W. Control of alternative splicing in immune responses: Many regulators, many predictions, much still to learn. Immunol. Rev. 2013, 253, 216–236. [Google Scholar] [CrossRef]
- Alcaraz-García, M.J.; Ruiz-Lafuente, N.; Sebastián-Ruiz, S.; Majado, M.J.; González-García, C.; Bernardo, M.V.; Álvarez-López, M.R.; Parrado, A. Human and mouse DOCK10 splicing isoforms with alternative first coding exon usage are differentially expressed in T and B lymphocytes. Hum. Immunol. 2011, 72, 531–537. [Google Scholar] [CrossRef]
- Parrado, A. Expression of DOCK10.1 protein revealed with a specific antiserum: Insights into regulation of first exon isoforms of DOCK10. Mol. Biol. Rep. 2020, 47, 3003–3010. [Google Scholar] [CrossRef]
- Lu, S.; Wang, J.; Chitsaz, F.; Derbyshire, M.K.; Geer, R.C.; Gonzales, N.R.; Gwadz, M.; Hurwitz, D.I.; Marchler, G.H.; Song, J.S.; et al. CDD/SPARCLE: The conserved domain database in 2020. Nucleic Acids Res. 2020, 48, D265–D268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchler-Bauer, A.; Bryant, S.H. CD-Search: Protein domain annotations on the fly. Nucleic Acids Res. 2004, 32, W327–W331. [Google Scholar] [CrossRef] [PubMed]
- Sigrist, C.J.; de Castro, E.; Cerutti, L.; Cuche, B.A.; Hulo, N.; Bridge, A.; Bougueleret, L.; Xenarios, I. New and continuing developments at PROSITE. Nucleic Acids Res. 2013, 41, D344–D347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Castro, E.; Sigrist, C.J.A.; Gattiker, A.; Bulliard, V.; Langendijk-Genevaux, P.S.; Gasteiger, E.; Bairoch, A.; Hulo, N. ScanProsite: Detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res. 2006, 34, W362–W365. [Google Scholar] [CrossRef]
- Hirata, E.; Yukinaga, H.; Kamioka, Y.; Arakawa, Y.; Miyamoto, S.; Okada, T.; Sahai, E.; Matsuda, M. In vivo fluorescence resonance energy transfer imaging reveals differential activation of Rho-family GTPases in glioblastoma cell invasion. J. Cell Sci. 2012, 125, 858–868. [Google Scholar] [CrossRef] [Green Version]
- Passon, N.; Bregant, E.; Sponziello, M.; Dima, M.; Rosignolo, F.; Durante, C.; Celano, M.; Russo, D.; Filetti, S.; Damante, G. Somatic amplifications and deletions in genome of papillary thyroid carcinomas. Endocrine 2015, 50, 453–464. [Google Scholar] [CrossRef]
- De Araujo, L.S.; Vaas, L.A.; Ribeiro-Alves, M.; Geffers, R.; Mello, F.C.; de Almeida, A.S.; Moreira, A.D.; Kritski, A.L.; Lapa e Silva, J.R.; Moraes, M.O.; et al. Transcriptomic biomarkers for tuberculosis: Evaluation of DOCK9, EPHA4, and NPC2 mRNA expression in peripheral blood. Front. Microbiol. 2016, 7, 1586. [Google Scholar] [CrossRef]
- Alkhateeb, A.; Rezaeian, I.; Singireddy, S.; Cavallo-Medved, D.; Porter, L.A.; Rueda, L. Transcriptomics signature from next-generation sequencing data reveals new transcriptomic biomarkers related to prostate cancer. Cancer Inform. 2019, 18, 1176935119835522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.; Shu, X.; Guo, X.; Liu, D.; Bao, J.; Milne, R.L.; Giles, G.G.; Wu, C.; Du, M.; White, E.; et al. Associations between genetically predicted blood protein biomarkers and pancreatic cancer risk. Cancer Epidemiol. Biomark. Prev. 2020. [Google Scholar] [CrossRef] [PubMed]
- Almstrup, K.; Leffers, H.; Lothe, R.A.; Skakkebaek, N.E.; Sonne, S.B.; Nielsen, J.E.; Rajpert-de Meyts, E.; Skotheim, R.I. Improved gene expression signature of testicular carcinoma in situ. Int. J. Androl. 2007, 30, 292–302. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein identification and analysis tools on the ExPASy server. In The Proteomics Protocols Handbook; Walker, J.M., Ed.; Humana Press: Totowa, NJ, USA, 2005; pp. 571–607. [Google Scholar]
- Kuo, H.C.; Lin, P.Y.; Chung, T.C.; Chao, C.M.; Lai, L.C.; Tsai, M.H.; Chuang, E.Y. DBCAT: Database of CpG islands and analytical tools for identifying comprehensive methylation profiles in cancer cells. J. Comput. Biol. 2011, 18, 1013–1017. Available online: dbcat.cgm.ntu.edu.tw (accessed on 23 June 2020). [CrossRef]
- Available online: https://www.ncbi.nlm.nih.gov/gene/23348#gene-expression (accessed on 23 June 2020).
- Available online: https://www.ncbi.nlm.nih.gov/gene/55619#gene-expression (accessed on 23 June 2020).
- Available online: https://www.ncbi.nlm.nih.gov/gene/139818#gene-expression (accessed on 23 June 2020).
- Fagerberg, L.; Hallström, B.M.; Oksvold, P.; Kampf, C.; Djureinovic, D.; Odeberg, J.; Habuka, M.; Tahmasebpoor, S.; Danielsson, A.; Edlund, K.; et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell. Proteom. 2014, 13, 397–406. [Google Scholar] [CrossRef] [Green Version]
Tissues | Cell Lines | ||||||
---|---|---|---|---|---|---|---|
Assay 1 | Assay 2 | R | p Value | R | p Value | ||
DOCK9 e1.1-e2 | DOCK9 e1.2-e2 | 0.751 | 1 × 10−5 | Significant | 0.319 | 0.137 | NS 1 |
DOCK9 e27-e28 | DOCK9 e33-e34 | 0.913 | 8 × 10−11 | Significant | 0.956 | 1 × 10−12 | Significant |
DOCK9 e1.1-e2 | DOCK9 e27-e28 | 0.853 | 3 × 10−8 | Significant | 0.708 | 2 × 10−4 | Significant |
DOCK9 e1.1-e2 | DOCK9 e33-e34 | 0.757 | 3 × 10−8 | Significant | 0.818 | 2 × 10−6 | Significant |
DOCK9 e1.2-e2 | DOCK9 e27-e28 | 0.873 | 6 × 10−9 | Significant | 0.824 | 1 × 10−6 | Significant |
DOCK9 e1.2-e2 | DOCK9 e33-e34 | 0.687 | 1 × 10−5 | Significant | 0.787 | 8 × 10−6 | Significant |
DOCK9 e27-e28 | DOCK9 e1.1-e2 + DOCK9 e1.2-e2 | 0.922 | 2 × 10−11 | Significant | 0.946 | 1 × 10−11 | Significant |
DOCK9 e33-e34 | DOCK9 e1.1-e2 + DOCK9 e1.2-e2 | 0.770 | 4 × 10−6 | Significant | 0.987 | 3 × 10−18 | Significant |
DOCK11 e1-e2 | DOCK11 e36-e37 | 0.954 | 4 × 10−14 | Significant | 0.970 | 2 × 10−14 | Significant |
Ab 1 | Ab 2 | R | p Value | |
---|---|---|---|---|
DOCK9 530A | DOCK9 531A | 0.240 | 0.270 | NS 1 |
DOCK9 530A | DOCK9 532A | 0.306 | 0.156 | NS 1 |
DOCK9 531A | DOCK9 532A | 0.865 | 1 × 10−7 | Significant |
Ab | qRT-PCR Assay | R | p Value | |
DOCK9 530A | DOCK9 e1.1-e2 | 0.725 | 9 × 10−5 | Significant |
DOCK9 530A | DOCK9 e1.2-e2 | 0.054 | 0.808 | NS 1 |
DOCK9 530A | DOCK9 e27-e28 | 0.310 | 0.151 | NS 1 |
DOCK9 530A | DOCK9 e33-e34 | 0.504 | 1 × 10−2 | Significant |
DOCK9 531A | DOCK9 e1.1-e2 | 0.338 | 0.114 | NS 1 |
DOCK9 531A | DOCK9 e1.2-e2 | 0.227 | 0.298 | NS 1 |
DOCK9 531A | DOCK9 e27-e28 | 0.424 | 4 × 10−2 | Significant |
DOCK9 531A | DOCK9 e33-e34 | 0.392 | 6 × 10−2 | NS 1 |
DOCK9 532A | DOCK9 e1.1-e2 | 0.348 | 0.103 | NS 1 |
DOCK9 532A | DOCK9 e1.2-e2 | 0.121 | 0.583 | NS 1 |
DOCK9 532A | DOCK9 e27-e28 | 0.329 | 0.126 | NS 1 |
DOCK9 532A | DOCK9 e33-e34 | 0.346 | 0.106 | NS 1 |
Ab 1 | Ab 2 | R | p Value | |
DOCK11 638A | DOCK11 639A | 0.631 | 1 × 10−3 | Significant |
Ab | qRT-PCR Assay | R | p Value | |
DOCK11 638A | DOCK11 e1-e2 | 0.646 | 9 × 10−4 | Significant |
DOCK11 638A | DOCK11 e36-e37 | 0.517 | 1 × 10−2 | Significant |
DOCK11 639A | DOCK11 e1-e2 | 0.723 | 1 × 10−4 | Significant |
DOCK11 639A | DOCK11 e36-e37 | 0.741 | 5 × 10−5 | Significant |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parrado, A. Expression of DOCK9 and DOCK11 Analyzed with Commercial Antibodies: Focus on Regulation of Mutually Exclusive First Exon Isoforms. Antibodies 2020, 9, 27. https://doi.org/10.3390/antib9030027
Parrado A. Expression of DOCK9 and DOCK11 Analyzed with Commercial Antibodies: Focus on Regulation of Mutually Exclusive First Exon Isoforms. Antibodies. 2020; 9(3):27. https://doi.org/10.3390/antib9030027
Chicago/Turabian StyleParrado, Antonio. 2020. "Expression of DOCK9 and DOCK11 Analyzed with Commercial Antibodies: Focus on Regulation of Mutually Exclusive First Exon Isoforms" Antibodies 9, no. 3: 27. https://doi.org/10.3390/antib9030027
APA StyleParrado, A. (2020). Expression of DOCK9 and DOCK11 Analyzed with Commercial Antibodies: Focus on Regulation of Mutually Exclusive First Exon Isoforms. Antibodies, 9(3), 27. https://doi.org/10.3390/antib9030027