A New Methodology for Improving Service Quality Measurement: Delphi-FUCOM-SERVQUAL Model
Abstract
:1. Introduction
2. Literature Review
2.1. Quality Measurement in Logistics and Transport
2.2. Quality Measurement in Other Fields
2.3. Integrated MCDM-SERVQUAL Model for Quality Measurement
3. New Methodology: DELPHI-FUCOM-SERVQUAL Model
3.1. The Proposed Methodology
3.2. Delphi Method
- −
- Step 1: Selection of the prognostic task, defining basic questions and fields for it;
- −
- Step 2: Selection of experts;
- −
- Step 3: Preparation of questionnaires;
- −
- Step 4: Delivery of questionnaires to experts;
- −
- Step 5: Collecting responses and their evaluation;
- −
- Step 6: Analysis and interpretation of responses;
- −
- Step 7: Re-exams; and
- −
- Step 8: Interpretation of responses and setting up of the final forecast.
3.3. Full Consistency Method (FUCOM)
- (1)
- That the ratio of the weight coefficients is equal to the comparative priority among the observed criteria () defined in Step 2, i.e., that the following condition is met:
- (2)
- In addition to condition (3), the final values of the weight coefficients should satisfy the condition of mathematical transitivity:
3.4. SERVQUAL Model
4. Case Study: Measuring the Quality of Logistics Service in a Company of Express Post
4.1. Determining Dimension Ranks by Supplying the Delphi Method
4.2. Determining the Weight Values of Dimensions Applying the FUCOM
- (1)
- The final values of the weight coefficients should meet condition (3), i.e., that , , and .
- (2)
- In addition to condition (3), the final values of the weight coefficients should meet the condition of mathematical transitivity, i.e., that , , and . By applying expression (5), the final model for determining the weight coefficients can be defined as:
4.3. The Frequency of Responses
5. Research Results
5.1. The Results of Dimensions in Terms of Customer Expectations
5.2. Results of Dimensions in Terms of Customer Perceptions
5.3. Statistical Analysis
- −
- There were no significant quantitative differences between expectations and perceptions. Most of the estimates were significantly binomially distributed with approximately the same parameter, as confirmed by the Signum test in 24 out of 25 estimates;
- −
- there were significant qualitative differences in assessing the expectations and perceptions contained in the fluctuation according to a stable rating of “4”. These differences are in favor of the objectivity of respondents and the concept of assessment, the correctness of the questions asked, etc., and realistically assess the company with ratings of 4.
- −
- Expectation E03 with a rating of “3” was significantly the lowest mean value for reliability, “15.000”;
- −
- expectation E03 with a rating of “3” was significantly the highest mean value for responsiveness, “33.333”;
- −
- expectation E05 with a rating of “4” was significantly the lowest mean value for empathy, “6.500”;
- −
- expectation E08 with a rating of “3” was significantly the lowest mean value for empathy, “3.750”;
- −
- Expectation E13 with a rating of “2” had significantly the highest mean value for Empathy of “30.000”;
- −
- expectation E15 with a rating of “2” was significantly the highest mean value of empathy, “20.000”;
- −
- expectation E18 with a rating of “3” and “4” was significantly the lowest mean value for empathy, “9.545” and “7.954”. There were no significant differences between these values; and
- −
- expectation E20 with a rating of “3” was significantly the highest mean value for responsiveness, “35.445”.
- −
- Perception P08 with a rating of “2” was significantly the lowest mean value for empathy, “2.000”;
- −
- perception P09 with a rating of “2” was significantly the lowest mean value for tangibles, “2.500”;
- −
- perception P10 with a rating of “2” was significantly the lowest mean value for empathy, “0.714”;
- −
- perception P18 with a rating of “3” was significantly the highest mean value for assurance, “52.500”;
- −
- perception P21 with a rating of “2” was significantly the lowest mean value for tangibles, “0.000”; and
- −
- perception P23 with a rating of “2” was significantly the lowest mean value for empathy, “3.000”.
6. Conclusions
Author Contributions
Conflicts of Interest
References
- Nowotarski, P.; Pasławski, J.; Kadler, A. Quality Management Systems as a key element for company strategy selection—Case study. MATEC Web Conf. 2018, 222, 01012. [Google Scholar] [CrossRef]
- Wang, Y.L.; Luor, T.; Luarn, P.; Lu, H.P. Contribution and Trend to Quality Research—A literature review of SERVQUAL model from 1998 to 2013. Inform. Econ. 2015, 19, 34. [Google Scholar] [CrossRef]
- Kersten, W.; Koch, J. The effect of quality management on the service quality and business success of logistics service providers. Int. J. Qual. Reliabil. Manag. 2010, 27, 185–200. [Google Scholar] [CrossRef] [Green Version]
- Memić, Z.; Vasiljević, M.; Stević, Ž.; Tanackov, I. Measuring the quality of logistics services in the transport company using the SERVQUAL MODEL. In Proceedings of the 2nd International Conference on Management, Engineering and Environment, Belgrade, Serbia, 11–12 October 2018. [Google Scholar]
- Gajewska, T.; Grigoroudis, E. Estimating the performance of the logistics services attributes influencing customer satisfaction in the field of refrigerated transport. Int. J. Shipp. Transport Logist. 2017, 9, 540–561. [Google Scholar] [CrossRef]
- Roslan, N.A.A.; Wahab, E.; Abdullah, N.H. Service Quality: A case study of logistics sector in Iskandar Malaysia using SERVQUAL Model. Procedia Soc. Behav. Sci. 2015, 172, 457–462. [Google Scholar] [CrossRef]
- Tsai, J.Y.; Ding, J.F.; Liang, G.S.; Ye, K.D. Use of a hybrid MCDM method to evaluate key solutions influencing service quality at a port logistics center in Taiwan. Brodogradnja Teorija i Praksa Brodogradnje i Pomorske Tehnike 2018, 69, 89–105. [Google Scholar] [CrossRef]
- Awasthi, A.; Sayyadi, R.; Khabbazian, A. A combined approach integrating gap analysis, QFD and AHP for improving logistics service quality. Int. J. Logist. Syst. Manag. 2018, 29, 190–214. [Google Scholar] [CrossRef]
- Cavana, R.Y.; Corbett, L.M.; Lo, Y.L. Developing zones of tolerance for managing passenger rail service quality. Int. J. Qual. Reliabil. Manag. 2007, 24, 7–31. [Google Scholar] [CrossRef]
- Sohn, J.I.; Woo, S.H.; Kim, T.W. Assessment of logistics service quality using the Kano model in a logistics-triadic relationship. Int. J. Logist. Manag. 2017, 28, 680–698. [Google Scholar] [CrossRef]
- Lin, F.H.; Tsai, S.B.; Lee, Y.C.; Hsiao, C.F.; Zhou, J.; Wang, J.; Shang, Z. Empirical research on Kano’s model and customer satisfaction. PLoS ONE 2017, 12, e0183888. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.C.; Lee, P.T.W. Novel 3D model for prioritising the attributes of port service quality: Cases involving major container ports in Asia. Int. J. Shipp. Transport Logist. 2017, 9, 673–695. [Google Scholar] [CrossRef]
- Bulut, E.; Duru, O.; Huang, S.T. A multidimensional QFD design for the service quality assessment of Kansai International Airport, Japan. Total Qual. Manag. Bus. Excell. 2018, 29, 202–224. [Google Scholar] [CrossRef]
- Huang, S.T.; Su, I. Applying Multilayer QFD to Assess Quality of Short Sea Shipping: An Empirical Study on Maritime Express Service between Taiwan and Mainland China. In Proceedings of the International Forum on Shipping, Ports and Airports (IFSPA) 2017: Innovative Transport Logistics in Shaping the Future of Supply Chains, Hong Kong, China, 22–25 May 2017. [Google Scholar]
- Al-Aomar, R.; Chaudhry, S. Simulation-based Six Sigma value function for system-level performance assessment and improvement. Int. J. Product. Perform. Manag. 2018, 67, 66–84. [Google Scholar] [CrossRef]
- Raja Sreedharan, V.; Raju, R.; Rajkanth, R.; Nagaraj, M. An empirical assessment of Lean Six Sigma Awareness in manufacturing industries: Construct development and validation. Total Qual. Manag. Bus. Excell. 2018, 29, 686–703. [Google Scholar] [CrossRef]
- Van Der Vorst, J.G.; Tromp, S.O.; Zee, D.J.V.D. Simulation modelling for food supply chain redesign; integrated decision making on product quality, sustainability and logistics. Int. J. Prod. Res. 2009, 47, 6611–6631. [Google Scholar] [CrossRef] [Green Version]
- Cho, I.J.; Kim, Y.J.; Kwak, C. Application of SERVQUAL and fuzzy quality function deployment to service improvement in service centres of electronics companies. Total Qual. Manag. Bus. Excell. 2016, 27, 368–381. [Google Scholar] [CrossRef]
- Paryani, K.; Masoudi, A.; Cudney, E.A. QFD application in the hospitality industry: A hotel case study. Qual. Manag. J. 2010, 17, 7–28. [Google Scholar] [CrossRef]
- Peprah, A.A.; Atarah, B.A. Assessing patient’s satisfaction using SERVQUAL model: A case of Sunyani Regional hospital, Ghana. Int. J. Bus. Soc. Res. 2014, 4, 133–143. [Google Scholar] [CrossRef]
- Behdioğlu, S.; Acar, E.; Burhan, H.A. Evaluating service quality by fuzzy SERVQUAL: A case study in a physiotherapy and rehabilitation hospital. Total Qual. Manag. Bus. Excell. 2017, 1–19. [Google Scholar] [CrossRef]
- Singh, A.; Prasher, A. Measuring healthcare service quality from patients’ perspective: Using Fuzzy AHP application. Total Qual. Manag. Bus. Excell. 2017, 1–17. [Google Scholar] [CrossRef]
- Khan, A.M.R.; Prasad, P.N.; Rajamanoharane, S. A decision-making framework for service quality measurements in hospitals. Int. J. Enterp. Netw. Manag. 2010, 4, 80–91. [Google Scholar] [CrossRef]
- Chou, C.C.; Liu, L.J.; Huang, S.F.; Yih, J.M.; Han, T.C. An evaluation of airline service quality using the fuzzy weighted SERVQUAL method. Appl. Soft Comput. 2011, 11, 2117–2128. [Google Scholar] [CrossRef]
- Saeedpoor, M.; Vafadarnikjoo, A.; Mobin, M.; Rastegari, A. A servqual model approach integrated with fuzzy AHP and fuzzy TOPSIS methodologies to rank life insurance firms. In Proceedings of the International Annual Conference of the American Society for Engineering Management, Indianapolis, IN, USA, 7–10 October 2015; American Society for Engineering Management (ASEM): Huntsville, AL, USA. [Google Scholar]
- Ahmed, R.R.; Vveinhardt, J.; Štreimikienė, D.; Ashraf, M.; Channar, Z.A. Modified SERVQUAL model and effects of customer attitude and technology on customer satisfaction in banking industry: Mediation, moderation and conditional process analysis. J. Bus. Econ. Manag. 2017, 18, 974–1004. [Google Scholar] [CrossRef]
- Long, S. The Correlation Research between Express Company Service Quality and Undergraduate Customer Satisfaction Degree Based on SERVQUAL Model. Korean Rev. Corp. Manag. 2016, 7, 1–23. [Google Scholar] [CrossRef]
- Apornak, A. Customer satisfaction measurement using SERVQUAL model, integration Kano and QFD approach in an educational institution. Int. J. Product. Perform. Manag. 2017, 21, 129–141. [Google Scholar] [CrossRef]
- Oskooii, N.; Albonaiemi, E. Measuring the customer satisfaction based on SERVQUAL model (case study: Mellat Bank in Tehran city). Innov. Mark. 2017, 13, 13–22. [Google Scholar] [CrossRef]
- Bourne, P.A. Customer Satisfaction of Policing the Jamaican Society: Using SERVQUAL to Evaluate Customer Satisfaction. J. Healthc. Commun. 2016, 1, 25. [Google Scholar] [CrossRef]
- Raza, S.A.; Jawaid, S.T.; Hassan, A. Internet banking and customer satisfaction in Pakistan. Qual. Res. Financ. Mark. 2015, 7, 24–36. [Google Scholar] [CrossRef] [Green Version]
- Ananda, S.; Devesh, S. Service quality and customer satisfaction: A study in the perception of retail banking customers in oman. In Proceedings of the 17th International Scientific Conference on Economic and Social Development—Managerial Issues in Modern Business, Warsaw, Poland, 20–21 October 2016; p. 333. [Google Scholar]
- Ali, M.; Raza, S.A. Service quality perception and customer satisfaction in Islamic banks of Pakistan: The modified SERVQUAL model. Total Qual. Manag. Bus. Excell. 2017, 28, 559–577. [Google Scholar] [CrossRef]
- Wang, R.; Yan, Z.; Liu, K. An Empirical Study: Measuring the service quality of an e-learning system with the model of ZOT SERVQUAL. In Proceedings of the IEEE 2010 International Conference on E-Business and E-Government (ICEE), Guangzhou, China, 7–9 May 2010; pp. 5379–5382. [Google Scholar] [CrossRef]
- Yang, X.S.; Zhu, Y.Y. SERVQUAL-based evaluation study on the quality of community-based service provided by university-affiliated stadiums. In Proceedings of the IEEE 2010 International Conference on Management and Service Science (MASS), Wuhan, China, 24–26 August 2010; pp. 1–4. [Google Scholar] [CrossRef]
- Luo, F.; Zhong, Y.; Zhang, X. Perceived performance measurement of outward bound tourists: An empirical study of SERVQUAL model. In Proceedings of the IEEE 2010 International Conference on Management and Service Science (MASS), Wuhan, China, 24–26 August 2010; pp. 1–4. [Google Scholar] [CrossRef]
- Altuntas, S.; Dereli, T.; Yilmaz, M.K. Multi-criteria decision making methods based weighted SERVQUAL scales to measure perceived service quality in hospitals: A case study from Turkey. Total Qual. Manag. Bus. Excell. 2012, 23, 1379–1395. [Google Scholar] [CrossRef]
- Badi, I.; Ballem, M. Supplier selection using the rough BWM-MAIRCA model: A case study in pharmaceutical supplying in Libya. Decis. Mak. Appl. Manag. Eng. 2018, 1, 16–33. [Google Scholar] [CrossRef]
- Liu, F.; Aiwu, G.; Lukovac, V.; Vukic, M. A multicriteria model for the selection of the transport service provider: A single valued neutrosophic DEMATEL multicriteria model. Decis. Mak. Appl. Manag. Eng. 2018, 1, 121–130. [Google Scholar] [CrossRef]
- Petrović, I.; Kankaraš, M. DEMATEL-AHP multi-criteria decision making model for the selection and evaluation of criteria for selecting an aircraft for the protection of air traffic. Decis. Mak. Appl. Manag. Eng. 2018, 1, 93–110. [Google Scholar] [CrossRef]
- Pamučar, D.; Božanić, D.; Lukovac, V.; Komazec, N. Normalized weighted geometric bonferroni mean operator of interval rough numbers—Application in interval rough DEMATEL-COPRAS. Facta Univ. Ser. Mech. Eng. 2018, 16, 171–191. [Google Scholar] [CrossRef]
- Stević, Ž.; Stjepanović, Ž.; Božičković, Z.; Das, D.K.; Stanujkić, D. Assessment of Conditions for Implementing Information Technology in a Warehouse System: A Novel Fuzzy PIPRECIA Method. Symmetry 2018, 10, 586. [Google Scholar] [CrossRef]
- Paddeu, D.; Fancello, G.; Fadda, P. An experimental Customer Satisfaction Index to evaluate the performance of city logistics services. Transport 2017, 32, 262–271. [Google Scholar] [CrossRef]
- Nunić, Z. Evaluation and selection of the PVC carpentry Manufacturer using the FUCOM-MABAC model. Oper. Res. Eng. Sci. Theory Appl. 2018, 1, 13–28. [Google Scholar]
- Sharma, H.; Roy, J.; Kar, S.; Prentkovskis, O. Multi Criteria Evaluation Framework for Prioritizing Indian Railway Stations Using Modified Rough AHP-Mabac Method. Transport Telecommun. J. 2018, 19, 113–127. [Google Scholar] [CrossRef] [Green Version]
- Verseckiene, A.; Palsaitis, R.; Yatskiv, I. Evaluation of Alternatives to Integrate Special Transportation Services for People with Movement Disorders. Transport Telecommun. J. 2017, 18, 263–274. [Google Scholar] [CrossRef] [Green Version]
- Csiszár, C.; Sándor, Z. Method for analysis and prediction of dwell times at stops in local bus transportation. Transport 2017, 32, 302–313. [Google Scholar] [CrossRef]
- Stanujkić, D.; Karabašević, D. An extension of the WASPAS method for decision-making problems with intuitionistic fuzzy numbers: A case of website evaluation. Oper. Res. Eng. Sci. Theory Appl. 2018, 1, 29–39. [Google Scholar]
- Nathanail, E.; Gogas, M.; Adamos, G. Assessing the Contribution of Urban Freight Terminals in Last Mile Operations. Transport Telecommun. J. 2016, 17, 231–241. [Google Scholar] [CrossRef] [Green Version]
- Grzegorzewski, P. On Separability of Fuzzy Relations. Int. J. Fuzzy Logic Intell. Syst. 2017, 17, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Stojaković, M.; Twrdy, E. A decision support tool for container terminal optimization within the berth subsystem. Transport 2016, 31, 29–40. [Google Scholar] [CrossRef]
- Rezaei, J.; Kothadiya, O.; Tavasszy, L.; Kroesen, M. Quality assessment of airline baggage handling systems using SERVQUAL and BWM. Tour. Manag. 2018, 66, 85–93. [Google Scholar] [CrossRef]
- Ji, X. SERVQUAL-Model-Based Fuzzy Evaluation of Express Service Quality. Int. J. Transp. Eng. Technol. 2018, 4, 20. [Google Scholar] [CrossRef]
- Pamučar, D.; Stević, Ž.; Sremac, S. A New Model for Determining Weight Coefficients of Criteria in MCDM Models: Full Consistency Method (FUCOM). Symmetry 2018, 10, 393. [Google Scholar] [CrossRef]
- Parasuraman, A.; Zeithaml, V.A.; Berry, L.L. A conceptual model of service quality and its implications for future research. J. Mark. 1985, 49, 41–50. [Google Scholar] [CrossRef]
- Parasuraman, A.; Zeithaml, V.A.; Berry, L.L. SERVQUAL: A multiple-item scale for measuring consumer perceptions of service quality. J. Retail. 1988, 64, 12–40. [Google Scholar]
- Parasuraman, A.; Zeithaml, V.A.; Berry, L.L. Reassessment of expectations as a comparison standard in measuring service quality: Implications for further research. J. Mark. 1994, 58, 111–124. [Google Scholar] [CrossRef]
Order No. | Questions |
---|---|
1. | The company will provide a service at the expected time. |
2. | Employees in the company will show interest in customers’ problems. |
3. | The company will provide a service as promised. |
4. | Delivery of the shipment will be carried out on the first attempt. |
5. | The company will reliably carry out delivery of large value shipment. |
6. | The company will deliver the shipment at the expected time for long distance. |
7. | Employees’ conduct will create trust of customers. |
8. | Customers will be safe while using services. |
9. | Senders/receivers will be informed if the service is not possible. |
10. | Couriers will pick up and/or deliver the shipment at the expected time. |
11. | The cost of the service will be acceptable. |
12. | Couriers in the company will be kind. |
13. | Company’s delivery vehicles will be visually appealing. |
14. | Packaging of delivered shipment will be clean and neat. |
15. | Employees in the company will look neat. |
16. | Delivery vehicles will be modern and will have all necessary equipment. |
17. | Individual attention will be given to the customer. |
18. | Customers will feel comfortable in contact with employees. |
19. | Employees in the company will show understanding. |
20. | The company will recognize the needs of customers. |
21. | The working hours of the company will be appropriate and acceptable to customers. |
22. | Employees in the company will be willing and able to help. |
23. | Customers will obtain right answers to their questions. |
24. | Employees at the Call Center will provide all necessary information to customers. |
25. | Upon request, customers will respond quickly and reliably. |
Dimension | Rank |
---|---|
Reliability | 1 |
Assurance | 2 |
Tangibles | 4 |
Empathy | 5 |
Responsiveness | 3 |
Main Indicators | Reliability | Assurance | Tangibles | Empathy | Responsiveness | ∑ |
---|---|---|---|---|---|---|
Respondent 1 | 25 | 20 | 15 | 15 | 25 | 100 |
Respondent 2 | 30 | 30 | 10 | 10 | 20 | 100 |
Respondent 3 | 25 | 15 | 15 | 20 | 25 | 100 |
Respondent 4 | 50 | 30 | 5 | 5 | 10 | 100 |
Respondent 5 | 25 | 25 | 15 | 15 | 20 | 100 |
Respondent 6 | 25 | 25 | 25 | 15 | 10 | 100 |
Respondent 7 | 40 | 30 | 5 | 5 | 20 | 100 |
Respondent 8 | 20 | 20 | 20 | 20 | 20 | 100 |
Respondent 9 | 20 | 20 | 20 | 20 | 20 | 100 |
Respondent 10 | 20 | 20 | 20 | 20 | 20 | 100 |
Respondent 11 | 25 | 20 | 20 | 15 | 20 | 100 |
... | ||||||
Respondent 67 | 80 | 10 | 0 | 0 | 10 | 100 |
Respondent 68 | 20 | 50 | 0 | 0 | 30 | 100 |
Respondent 69 | 20 | 20 | 20 | 0 | 40 | 100 |
Respondent 70 | 25 | 20 | 5 | 30 | 20 | 100 |
SUM | 1860 | 1840 | 895 | 775 | 1630 | 7000 |
wj | 0.2657 | 0.2629 | 0.1279 | 0.1107 | 0.2329 | 1 |
Rank | 1 | 2 | 3 | 4 | 5 |
Dimension | D1 | D2 | D5 | D3 | D4 |
---|---|---|---|---|---|
1 | 1.2 | 1.5 | 2.7 | 3.2 |
E1 | ||||||
Dimension | D1 | D2 | D5 | D3 | D4 | DFC |
1 | 1.2 | 1.5 | 2.7 | 3.2 | ||
Weights | 0.315 | 0.263 | 0.210 | 0.113 | 0.099 | 0.000 |
E2 | ||||||
Dimension | D1 | D2 | D5 | D3 | D4 | DFC |
1 | 1.3 | 1.5 | 2.7 | 3.2 | ||
Weights | 0.337 | 0.260 | 0.178 | 0.116 | 0.109 | 0.000 |
E3 | ||||||
Dimension | D1 | D2 | D5 | D3 | D4 | DFC |
1 | 1.05 | 1.15 | 1.8 | 2.2 | ||
Weights | 0.261 | 0.248 | 0.227 | 0.145 | 0.119 | 0.000 |
E4 | ||||||
Dimension | D1 | D2 | D5 | D3 | D4 | DFC |
1 | 1 | 1.2 | 1.9 | 2.6 | ||
Weights | 0.267 | 0.267 | 0.222 | 0.141 | 0.103 | 0.000 |
E5 | ||||||
Dimension | D1 | D2 | D5 | D3 | D4 | DFC |
1 | 1.1 | 1.4 | 2 | 2.4 | ||
Weights | 0.282 | 0.257 | 0.202 | 0.141 | 0.118 | 0.000 |
Dimension | AV | SD | Wj | Cronbach Alpha Coefficient |
---|---|---|---|---|
Reliability | 4.029 | 1.010 | 0.291 | 0.918 |
Assurance | 4.100 | 1.022 | 0.259 | 0.891 |
Tangibles | 4.150 | 0.924 | 0.130 | 0.845 |
Empathy | 4.260 | 0.829 | 0.109 | 0.851 |
Responsiveness | 4.282 | 0.831 | 0.207 | 0.875 |
SERVQUAL (1) | 4.164 | 0.923 | 1 | 0.876 |
Dimension | AV | SD | Wj | Cronbach Alpha Coefficient |
---|---|---|---|---|
Reliability | 4.176 | 0.995 | 0.291 | 0.947 |
Assurance | 4.196 | 1.006 | 0.259 | 0.889 |
Tangibles | 4.200 | 1.040 | 0.130 | 0.824 |
Empathy | 4.360 | 0.844 | 0.109 | 0.891 |
Responsiveness | 4.282 | 0.944 | 0.207 | 0.894 |
SERVQUAL (2) | 4.243 | 0.966 | 1 | 0.889 |
Delphi-FUCOM-SERVQUAL | |||
---|---|---|---|
Dimensions | PER | EXP | Gap |
Reliability | 1.172 | 1.215 | 0.043 |
Assurance | 1.062 | 1.087 | 0.025 |
Tangibles | 0.540 | 0.546 | 0.006 |
Empathy | 0.464 | 0.475 | 0.011 |
Responsiveness | 0.886 | 0.886 | 0.000 |
Total | 0.017 |
Responsiveness |
---|
22. Employees in the company are willing and able to help. |
23. Customers obtained right answers to their questions. |
24. Employees at the Call Center provided all necessary information to the customers. |
25. Customer requests are responded quickly and reliably. |
Expectations | Perceptions | Signum Test | Correlation Coefficient | ANOVA | ||||
---|---|---|---|---|---|---|---|---|
Binomial Distribution Parameter | Verification by χ2 Test | Binomial Distribution Parameter | Verification by χ2 Test | |||||
E01 | 0.8057 | 0.0184 | P01 | 08457 | 0.2460 | 0.6264 | +0.0920 | 0.5038 |
E02 | 0.8285 | 0.3297 | P02 | 0.8457 | 0.3392 | 0.3613 | +0.1183 | 0.4417 |
E03 | 0.8085 | 0.0177 | P03 | 0.8542 | 0.4359 | 0.4291 | +0.1176 | 0.6555 |
E04 | 0.7942 | 0.3839 | P04 | 0.8085 | 0.2737 | 0.6434 | −0.1183 | 0.6561 |
E05 | 0.8114 | 0.0331 | P05 | 0.8228 | 0.0783 | 1.0000 | +0.2656 | 0.0168 |
E06 | 0.7857 | 0.0068 | P06 | 0.8343 | 0.3552 | 0.2683 | +0.1855 | 0.1438 |
E07 | 0.8314 | 0.5879 | P07 | 0.8285 | 0.2804 | 0.8596 | +0.1340 | 0.0764 |
E08 | 0.7856 | 0.3754 | P08 | 0.8485 | 0.3036 | 0.7277 | +0.3101 | 0.0131 |
E09 | 0.8171 | 0.3079 | P09 | 0.8343 | 0.2301 | 0.6170 | +0.3256 | 0.0061 |
E10 | 0.8085 | 0.0780 | P10 | 0.8457 | 0.0793 | 0.4291 | +0.0804 | 0.4144 |
E11 | 0.7826 | 0.0359 | P11 | 0.6971 | 0.0000 | 0.0743 | +0.5181 | 0.0000 |
E12 | 0.8400 | 0.5127 | P12 | 0.8714 | 0.4980 | 0.1762 | +0.4371 | 0.0001 |
E13 | 0.8514 | 0.1261 | P13 | 0.8742 | 0.3553 | 0.1762 | +0.4264 | 0.0000 |
E14 | 0.8342 | 03614 | P14 | 0.8485 | 0.4148 | 0.5107 | +0.3628 | 0.0003 |
E15 | 0.8342 | 0,3381 | P15 | 0.8771 | 0.5093 | 0.0311 | +0.4857 | 0.0001 |
E16 | 0.8371 | 0.2123 | P16 | 0.8714 | 0.4989 | 0.3239 | +0.2936 | 0.0105 |
E17 | 0.8342 | 0.6026 | P17 | 0.8485 | 0.2523 | 0.7353 | +0.1732 | 0.1517 |
E18 | 0.8485 | 0.1715 | P18 | 0.8685 | 0.2670 | 0.1884 | +0.1809 | 0.0311 |
E19 | 0.8628 | 0.7082 | P19 | 0.8771 | 0.6105 | 0.2299 | +0.1327 | 0.0129 |
E20 | 0.8400 | 0.4780 | P20 | 0.8685 | 0.1061 | 0.2962 | +0.2851 | 0.0055 |
E21 | 0.9028 | 0.4991 | P21 | 0.8971 | 0.6446 | 0.8598 | +0.4327 | 0.0000 |
E22 | 0.8628 | 0.4420 | P22 | 0.8742 | 0.0515 | 0.8638 | +0.1411 | 0.4380 |
E23 | 0.8742 | 0.6696 | P23 | 0.8428 | 0.2887 | 0.4576 | +0.3871 | 0.0005 |
E24 | 0.8628 | 0.6829 | P24 | 0.8485 | 0.0045 | 0.7277 | +0.2907 | 0.0172 |
E25 | 0.8257 | 0.7607 | P25 | 0.8600 | 0.0942 | 0.0909 | +0.3487 | 0.0053 |
Score for P(n) | Rating 1 | Rating 2 | Rating 3 | Rating 4 | Rating 5 |
---|---|---|---|---|---|
Score P05 | 2.0000 | 4.1667 | 4.0000 | 3.8182 | 4.3333 |
Score P07 | 5.0000 | 4.5000 | 3.6000 | 3.9583 | 4.4194 |
Score P08 | 1.0000 | 3.8000 | 4.0000 | 4.0000 | 4.3428 |
Score P09 | 2.0000 | 4.2500 | 4.0000 | 4.0385 | 4.3030 |
Score P11 | 2.8750 | 3.6428 | 2.8571 | 4.1111 | 4.6087 |
Score P12 | 1.0000 | 3.6667 | 4.2500 | 3.9583 | 4.4737 |
Score P13 | 1.0000 | 4.0000 | 4.0000 | 4.1364 | 4.4615 |
Score P14 | 1.5000 | 4.6667 | 3.8000 | 4.0385 | 4.4414 |
Score P15 | 2.0000 | 4.0000 | 3.6000 | 3.8696 | 4.4872 |
Score P16 | 1.0000 | 4.0000 | 4.2500 | 4.0741 | 4.3611 |
Score P18 | 3.0000 | 4.7500 | 3.7500 | 3.9091 | 4.4615 |
Score P19 | - | 4.7500 | 3.3333 | 4.1200 | 4.4737 |
Score P20 | - | 4.5000 | 3.0000 | 4.0625 | 4.4688 |
Score P21 | 1.0000 | 5.0000 | 3.6667 | 4.5217 | 4.6429 |
Score P23 | 4.0000 | 3.6000 | 4.5000 | 4.0000 | 4.7353 |
Score P24 | 2.0000 | 4.3333 | 3.9167 | 4.4375 | 4.4474 |
Score P25 | 2.0000 | 4.3333 | 3.5000 | 3.9500 | 4.3947 |
Mean value | 2.0916 | 4.2329 | 3.7661 | 4.0590 | 4.4621 |
Std. deviation | 1.1919 | 0.4256 | 0.4320 | 0.1814 | 0.1127 |
Rating 1 | Rating 2 | Rating 3 | Rating 4 | Rating 5 | Σ | |
---|---|---|---|---|---|---|
Expectations E | 0.0574 | 1.1269 | 8.2996 | 27.1676 | 33.3484 | 70 |
Perceptions P | 0.0376 | 0.8381 | 6.9988 | 25.9748 | 36.1506 | 70 |
Reliability | Assurance | Tangibles | Empathy | Responsiveness | |
---|---|---|---|---|---|
E01 | 0.2333 | 0.3283 | 0.9282 | 0.1498 | 0.8148 |
E02 | 0.7551 | 0.4521 | 0.2927 | 0.0902 | 0.2.855 |
E03 | 0.0298 | 0.9813 | 0.7376 | 0.7055 | 0.0342 |
E04 | 0.9925 | 0.8959 | 0.8593 | 0.4429 | 0.7441 |
E05 | 0.2810 | 0.6594 | 0.1281 | 0.0254 | 0.4000 |
E06 | 0.1904 | 0.5799 | 0.7243 | 0.1564 | 0.9151 |
E07 | 0.8086 | 0.2367 | 0.4655 | 0.2065 | 0.7040 |
E08 | 0.6519 | 0.7103 | 0.6425 | 0.0136 | 0.8606 |
E09 | 0.4248 | 0.5802 | 0.6967 | 0.8821 | 0.3657 |
E10 | 0.5789 | 0.9385 | 0.5314 | 0.5716 | 0.4891 |
E11 | 0.4554 | 0.7911 | 0.2901 | 0.1673 | 0.7318 |
E12 | 0.6603 | 0.9752 | 0.4280 | 0.4646 | 0.7597 |
E13 | 0.5509 | 0.1355 | 0.2993 | 0.0195 | 0.8361 |
E14 | 0.9289 | 0.4619 | 0.9377 | 0.9059 | 0.2006 |
E15 | 0.4364 | 0.1113 | 0.1549 | 0.0008 | 0.8963 |
E16 | 0.4509 | 0.3688 | 0.9011 | 0.5942 | 0.2297 |
E17 | 0.2614 | 0.9714 | 0.4900 | 0.6001 | 0.4829 |
E18 | 0.3586 | 0.4111 | 0.5082 | 0.0327 | 0.4736 |
E19 | 0.7623 | 0.1867 | 0.6461 | 0.5103 | 0.1482 |
E20 | 0.2489 | 0.3789 | 0.2294 | 0.1240 | 0.0114 |
E21 | 0.4091 | 0.9642 | 0.1852 | 0.4320 | 0.7649 |
E22 | 0.8918 | 0.3974 | 0.1006 | 0.0827 | 0.3012 |
E23 | 0.8118 | 0.1397 | 0.5539 | 0.1420 | 0.2649 |
E24 | 0.3725 | 0.3800 | 0.8176 | 0.9727 | 0.0757 |
E25 | 0.8864 | 0.5691 | 0.9378 | 0.9155 | 0.6695 |
1 | 2 | 3 | 4 | 5 | ||
---|---|---|---|---|---|---|
E03 | Reliability | - | 30.625 | 15.000 | 26.597 | 30.000 |
E03 | Responsiveness | - | 18.125 | 33.333 | 23.421 | 20.645 |
E05 | Empathy | - | 11.250 | 13.636 | 6.500 | 13.065 |
E08 | Empathy | 15.000 | 16.250 | 3.750 | 9.423 | 15.500 |
E13 | Empathy | 10.000 | 30.000 | 14.167 | 8.333 | 12.931 |
E15 | Empathy | - | 20.000 | 8.500 | 7.812 | 15.358 |
E18 | Empathy | - | 20.000 | 9.545 | 7.954 | 12.794 |
E20 | Responsiveness | - | 15.000 | 35.445 | 20.800 | 21.774 |
Reliability | Assurance | Tangibles | Empathy | Responsiveness | |
---|---|---|---|---|---|
P01 | 0.6222 | 0.8900 | 0.9662 | 0.1628 | 0.5745 |
P02 | 0.7485 | 0.8557 | 0.2543 | 0.0965 | 0.3145 |
P03 | 0.2446 | 0.6583 | 0.2228 | 0.1344 | 0.2166 |
P04 | 0.6516 | 0.9724 | 0.8606 | 0.1406 | 0.3944 |
P05 | 0.9525 | 0.2886 | 0.7884 | 0.1146 | 0.7364 |
P06 | 0.1071 | 0.7545 | 0.2750 | 0.1366 | 0.5060 |
P07 | 0.6714 | 0.2601 | 0.2585 | 0.0611 | 0.9407 |
P08 | 0.3100 | 0.2353 | 0.3748 | 0.0495 | 0.5877 |
P09 | 0.7329 | 0.2739 | 0.0449 | 0.0681 | 0.7172 |
P10 | 0.1876 | 0.5262 | 0.1879 | 0.0037 | 0.3463 |
P11 | 0.9835 | 0.5157 | 0.7200 | 0.5412 | 0.4980 |
P12 | 0.4387 | 0.7817 | 0.2365 | 0.1570 | 0.9112 |
P13 | 0.3607 | 0.4781 | 0.1240 | 0.1666 | 0.2573 |
P14 | 0.1763 | 0.6297 | 0.0715 | 0.1430 | 0.8599 |
P15 | 0.2135 | 0.3281 | 0.2578 | 0.0605 | 0.3694 |
P16 | 0.9670 | 0.5075 | 0.8083 | 0.9810 | 0.4574 |
P17 | 0.7442 | 0.3776 | 0.5458 | 0.2159 | 0.3887 |
P18 | 0.7128 | 0.0117 | 0.2318 | 0.1094 | 0.4439 |
P19 | 0.2658 | 0.6042 | 0.2876 | 0.2885 | 0.8120 |
P20 | 0.9867 | 0.0873 | 0.4312 | 0.0697 | 0.5619 |
P21 | 0.5551 | 0.7017 | 0.0404 | 0.4582 | 0.8648 |
P22 | 0.5802 | 0.6291 | 0.3115 | 0.1567 | 0.5822 |
P23 | 0.0832 | 0.4412 | 0.0810 | 0.0074 | 0.2661 |
P24 | 0.5726 | 0.6054 | 0.7890 | 0.1816 | 0.5781 |
P25 | 0.3734 | 0.8136 | 0.8965 | 0.0647 | 0.6609 |
1 | 2 | 3 | 4 | 5 | ||
---|---|---|---|---|---|---|
P08 | Empathy | 10.000 | 2.000 | 6.000 | 12.083 | 12.429 |
P09 | Tangibles | 13.333 | 2.500 | 18.750 | 14.615 | 11.818 |
P10 | Empathy | 10.000 | 0.714 | 10.000 | 10.476 | 13.514 |
P18 | Assurance | 25.000 | 35.000 | 52.500 | 25.000 | 23.426 |
P21 | Tangibles | 10.000 | 0.000 | 23.333 | 10.217 | 13.810 |
P23 | Empathy | 20.000 | 3.000 | 9.166 | 8.541 | 14.118 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prentkovskis, O.; Erceg, Ž.; Stević, Ž.; Tanackov, I.; Vasiljević, M.; Gavranović, M. A New Methodology for Improving Service Quality Measurement: Delphi-FUCOM-SERVQUAL Model. Symmetry 2018, 10, 757. https://doi.org/10.3390/sym10120757
Prentkovskis O, Erceg Ž, Stević Ž, Tanackov I, Vasiljević M, Gavranović M. A New Methodology for Improving Service Quality Measurement: Delphi-FUCOM-SERVQUAL Model. Symmetry. 2018; 10(12):757. https://doi.org/10.3390/sym10120757
Chicago/Turabian StylePrentkovskis, Olegas, Živko Erceg, Željko Stević, Ilija Tanackov, Marko Vasiljević, and Mladen Gavranović. 2018. "A New Methodology for Improving Service Quality Measurement: Delphi-FUCOM-SERVQUAL Model" Symmetry 10, no. 12: 757. https://doi.org/10.3390/sym10120757
APA StylePrentkovskis, O., Erceg, Ž., Stević, Ž., Tanackov, I., Vasiljević, M., & Gavranović, M. (2018). A New Methodology for Improving Service Quality Measurement: Delphi-FUCOM-SERVQUAL Model. Symmetry, 10(12), 757. https://doi.org/10.3390/sym10120757