Second-Order Conditional Lie–Bäcklund Symmetries and Differential Constraints of Nonlinear Reaction–Diffusion Equations with Gradient-Dependent Diffusivity
Abstract
:1. Introduction
2. Basic Notations and Theorems
3. Equation (3) Admitting CLBS (1) and H–J SI (2)
- For ,
- For ,
- For ,
4. Symmetry Reductions of Equation (3)
- For ,
- For ,The solutions of this system of ODEs with are listed below:
- For ,
- For ,The solutions blow up along the curves when and extinguish along the curves when .
- For ,
- (i)
- For and ,
- (ii)
- For ,
- (iii)
- For ,
- For ,The solutions blow up along the curves when and extinguish along the curves when .
- For ,
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lie, S. Über die integration durch bestimmte integrale von einer klasse linearer partieller differentialgleichungen. Arch. Math. 1881, 6, 328–368. [Google Scholar]
- Noether, E. Invariante Variationsprobleme. Nachr. König. Gesell. Wissen. Göttingen, Math. Phys. Kl. 1918, 1918, 235–257. [Google Scholar]
- Bluman, G.W.; Cheviakov, A.F.; Anco, S.C. Applications of Symmetry Methods to Partial Differential Equations; Springer: New York, NY, USA, 2010. [Google Scholar]
- Fushchych, W.I.; Shtelen, W.M.; Serov, M.I. Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathemtical Physics; Kluwer: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Cherniha, R.; Serov, M.; Pliukhin, O. Nonlinear Reaction–Diffusion-Convection Equations: Lie and Conditional Symmetry, Exact Solutions and Their Applications; CRC Press: New York, NY, USA, 2018. [Google Scholar]
- Zhdanov, R.Z. Conditional Lie–Bäcklund symmetry and reduction of evolution equation. J. Phys. A: Math. Gen. 1995, 28, 3841–3850. [Google Scholar] [CrossRef]
- Fokas, A.S.; Liu, Q.M. Nonlinear interaction of traveling waves of nonintegrable equations. Phys. Rev. Lett. 1994, 72, 3293–3296. [Google Scholar] [CrossRef] [PubMed]
- Basarab-Horwath, P.; Zhdanov, R.Z. Initial-value problems for evolutionary partial differential equations and higher-order conditional symmetries. J. Math. Phys. 2000, 42, 376–389. [Google Scholar] [CrossRef]
- Zhdanov, R.Z.; Andreitsev, A.Y. Non-classical reductions of initial-value problems for a class of nonlinear evolution equations. J. Phys. A: Math. Gen. 2000, 33, 5763–5781. [Google Scholar] [CrossRef] [Green Version]
- Zhdanov, R.Z. Higher conditional symmetry and reductions of initial-value problems. Nonlinear Dyn. 2004, 28, 17–27. [Google Scholar] [CrossRef]
- Sergyeyev, A. Constructing conditionally integrable evolution systems in (1+1)-dimensions: A generalization of invariant modules approach. J. Phys. A: Math. Gen. 2002, 35, 7563–7660. [Google Scholar] [CrossRef]
- Ji, L.N.; Qu, C.Z. Conditional Lie–Bäcklund symmetry of evolution system and application for reaction–diffusion system. Stud. Appl. Math. 2014, 133, 118–149. [Google Scholar] [CrossRef]
- Wang, J.P.; Ji, L.N. Conditional Lie–Bäcklund symmetry, second-order differential constraint and direct reduction of diffusion systems. J. Math. Anal. Appl. 2015, 427, 1101–1118. [Google Scholar] [CrossRef]
- Ji, L.N.; Qu, C.Z. Conditional Lie–Bäcklund symmetries and invariant subspaces to nonlinear diffusion equations. IMA J. Appl. Math. 2011, 76, 610–632. [Google Scholar] [CrossRef]
- Ji, L.N.; Qu, C.Z. Conditional Lie–Bäcklund symmetries and invariant subspaces to nonlinear diffusion equaitons with convection and source. Stud. Appl. Math. 2013, 131, 266–301. [Google Scholar]
- Qu, C.Z.; Ji, L.N. Invariant subspaces and Conditional Lie–Bäcklund symmetries of inhomogeneous nonlinear diffusion equations. Sci. China Math. 2013, 56, 2187–2203. [Google Scholar] [CrossRef]
- Svirshchevskii, S.R. Invariant linear spaces and exact solutions of nonlinear evolution equations. J. Nonlinear Math. Phys. 1996, 3, 164–169. [Google Scholar] [CrossRef]
- Galaktionov, V.A.; Svirshchevskii, S.R. Exact solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics; Chapman and Hall: London, UK, 2007. [Google Scholar]
- Qu, C.Z. Exact solutions to nonlinear diffusion equations obtained by generalized conditional symmetry. IMA J. Appl. Math. 1999, 62, 283–302. [Google Scholar]
- Qu, C.Z. Group classification and generalized conditional symmetry reduction of the nonlinear diffusion-convection equation with a nonlinear source. Stud. Appl. Math. 1997, 99, 107–136. [Google Scholar] [CrossRef]
- Ji, L.N.; Qu, C.Z. Conditional Lie–Bäcklund symmetries and solutions to (n+1)-dimensional nonlinear diffusion equations. J. Math. Phys. 2007, 484, 103509. [Google Scholar] [CrossRef]
- Ji, L.N.; Qu, C.Z.; Ye, Y.J. Solutions and symmetry reductions of the n-dimensional nonlinear convection-diffusion equations. IMA J. Appl. Math. 2010, 75, 17–55. [Google Scholar] [CrossRef]
- Qu, C.Z.; Ji, L.N.; Wang, L.Z. Conditional Lie–Bäcklund symmetries and sign-invarints to quasi-linear diffusion equations. Stud. Appl. Math. 2007, 119, 355–391. [Google Scholar] [CrossRef]
- Qu, C.Z.; Zhang, S.L.; Liu, R.C. Separation of variables and exaxt solutions to quasilinear diffusion equations with nonlinear source. Phys. D: Nonlinear Phenom. 2000, 144, 97–123. [Google Scholar] [CrossRef]
- Zhang, S.L.; Lou, S.Y.; Qu, C.Z. New variable separation approach: Application to nonlinear diffusion equations. J. Phys. A: Math. Gen. 2003, 36, 12223–12242. [Google Scholar] [CrossRef]
- Yanenko, N.N. Theory of consistency and methods of integrating systems of nonlinear partial differential equations. In Proceedings of the Fourth All-Union Mathematical Congress, Leningrad, Russia; 1964; pp. 247–259. (In Russian). [Google Scholar]
- Sidorov, A.F.; Shapeev, V.P.; Yanenko, N.N. Method of Differential Constraints and Its Application to Gas Dynamics; Nauka: Novosibirsk, Russia, 1984. [Google Scholar]
- Qu, C.Z.; Estévez, P.G. On nonlinear diffusion equations with x-dependent convection and absorption. Nonlinear Anal. Theory Methods Appl. 2004, 37, 549–557. [Google Scholar] [CrossRef]
- Pascal, J.P.; Pascal, H. On some diffusive waves in nonlinear heat conduction. Int. J. Nonlinear Mech. 1993, 28, 641–649. [Google Scholar] [CrossRef]
- Pascal, J.P.; Pascal, H. On some nonlinear shear flows of non-Newtonian fluids. Int. J. Nonlinear Mech. 1995, 30, 487–500. [Google Scholar] [CrossRef]
- Assis, P.C.; Silva, L.R. Nonlinear diffusion equations, Tsallis formalism and exact solutions. J. Math. Phys. 2005, 46, 1–7. [Google Scholar] [CrossRef]
- Cherniha, R.; King, J.R.; Kovalenko, S. Lie symmetry properties of nonlinear reaction–diffusion equations with gradient-dependent diffusivity. Commun. Nonlinear Sci. Numer. Simul. 2016, 36, 98–108. [Google Scholar] [CrossRef]
- Barenblatt, G.I. On self-similar motions of compressible fluid in a porous medium. Appl. Math. Mech. 1952, 16, 679–698. [Google Scholar]
- Akhatov, I.S.; Gazizov, R.K.; Ibragimov, N.H. Group classification of the equations of nonlinear filtration. Sov. Math. Dokl. 1987, 35, 384–386. [Google Scholar]
- Fridman, A. Partial Differential Equations of Parabolic Type; PrenticeHall: Englewood Cliffs, NJ, USA, 1964. [Google Scholar]
- Galaktionov, V.A. Geometric Sturmian Theory of Nonlinear Parabolic Equations and Applications; Chapman & Hall/CRC: Boca Raton, FL, USA, 2004. [Google Scholar]
- Samarskii, A.A.; Galaktionov, V.A.; Kurdyumov, S.P.; Mikhailov, A.P. Blow up in Quasilinear Parabolic Equations; Nauka: Moscow, Russia, 1987. [Google Scholar]
- Galaktionov, V.A.; Vázquez, J.L. A Stability Technique for Evolution Partial Differential Equations: A Dynamical Systems Approach; Birkhäuser: Boston, MA, USA, 2004. [Google Scholar]
- Galaktionov, V.A.; Dorodnitsyn, V.A.; Elenin, G.G.; Kurdyumov, S.P.; Samarskii, A.A. A quasilinear heat equation with a source: Peaking, localization, symmetry, exact solutions, asymptotics, structures. J. Sov. Math. 1988, 41, 1222–1292. [Google Scholar] [CrossRef]
- Goard, J.M.; Broadbridge, P. Nonclassical symmetry analysis of nonlinear reaction–diffusion equations in two spatial dimensions. Nonlinear Anal. Theory Methods Appl. 1996, 26, 735–754. [Google Scholar] [CrossRef]
- Broadbridge, P.; Bradshaw-Hajek, B.H.; Triadis, D. Exact nonclassical symmetry solutions of Arrhenius reaction–diffusion. Proc. R. Soc. A 2015, 471, 20150580. [Google Scholar] [CrossRef]
- Galaktionov, V.A. Quasilinear heat equations with first-order sign-invariants and new explicit solutions. Nonlinear Anal. Theory Methods Appl. 1994, 23, 1595–1621. [Google Scholar] [CrossRef]
- Galaktionov, V.A.; Posashkov, S.A. New explicit solutions of quasilinear heat equations with general first-order sign-invariants. Phys. D: Nonl. Phenom. 1996, 99, 217–236. [Google Scholar] [CrossRef]
- Galaktionov, V.A.; Posashkov, S.A. Maximal sign-invariants of quasilinear heat equations with gradient diffusivity. J. Math. Phys. 1998, 39, 4948–4964. [Google Scholar] [CrossRef]
- Bluman, G.W.; Kumei, S. Symmetries and Differential Equations; Springer: New York, NY, USA, 1989. [Google Scholar]
- Olver, P.J. Applications of Lie Groups to Differential Equations, 2nd ed.; Springer: New York, NY, USA, 1993. [Google Scholar]
- Ovsiannikov, L.V. Group Analysis of Differential Equations; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Andreev, V.K.; Kaptsov, O.V.; Pukhnachev, V.V.; Rodionov, A.A. Applications of Group-Theoretic Methods in Hydrodynamics; Kluwer: Dordrecht, The Netherland, 1998. [Google Scholar]
- Olver, P.J. Direct reduction and differential constraints. Proc. R. Soc. A 1994, 444, 509–523. [Google Scholar] [CrossRef]
No. | m | n | |||||
---|---|---|---|---|---|---|---|
1 | 2 | 1 | |||||
2 | 2 | 3 | |||||
3 | 2 | 3 | |||||
4 | 2 | ||||||
5 | 2 | 6 | 0 | ||||
6 | 0 | ||||||
7 | 0 | ||||||
8 | 2 | 0 | |||||
9 | 0 | ||||||
10 | 0 | ||||||
11 | 0 |
No. | ||||
---|---|---|---|---|
1 | ||||
2 | ||||
3 | ||||
4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, L.; Feng, W. Second-Order Conditional Lie–Bäcklund Symmetries and Differential Constraints of Nonlinear Reaction–Diffusion Equations with Gradient-Dependent Diffusivity. Symmetry 2018, 10, 267. https://doi.org/10.3390/sym10070267
Ji L, Feng W. Second-Order Conditional Lie–Bäcklund Symmetries and Differential Constraints of Nonlinear Reaction–Diffusion Equations with Gradient-Dependent Diffusivity. Symmetry. 2018; 10(7):267. https://doi.org/10.3390/sym10070267
Chicago/Turabian StyleJi, Lina, and Wei Feng. 2018. "Second-Order Conditional Lie–Bäcklund Symmetries and Differential Constraints of Nonlinear Reaction–Diffusion Equations with Gradient-Dependent Diffusivity" Symmetry 10, no. 7: 267. https://doi.org/10.3390/sym10070267
APA StyleJi, L., & Feng, W. (2018). Second-Order Conditional Lie–Bäcklund Symmetries and Differential Constraints of Nonlinear Reaction–Diffusion Equations with Gradient-Dependent Diffusivity. Symmetry, 10(7), 267. https://doi.org/10.3390/sym10070267