A Historical Perspective of the Theory of Isotopisms
Abstract
:1. Introduction
2. Antecedents
2.1. Topology
2.2. Algebra
3. Fundamentals
3.1. Isotopisms of Algebras
- Right divisors are isotopism invariants of zero algebras and simple algebras.
- Ideals are principal isotopism invariants of any algebra.
- Every finite-dimensional unital algebra has a principal isotope that is a simple algebra without left or right ideals.
- A unital algebra is associative if and only if every unital algebra that is isotopic to the former is associative and, indeed, isomorphic to that one.
- Every division algebra is isotopic to a unital division algebra.
- Every n-dimensional real division algebra, with , is isotopic to a unital division algebra with unit element e so that there exists a vector b in the algebra such that .
- it is anticommutative, that is , for all ; and
- it holds the so-called Jacobi identity
- , and
- ,
- Every simple unital algebra is isotopically simple.
- Every simple associative algebra is isotopically simple.
- Every non-associative algebra may be built up from isotopically simple algebras.
- The only one-dimensional isotopically simple algebras are the field itself and the one-dimensional zero-algebra.
- Every two-dimensional isotopically simple algebra over a base field is isotopic to a field of degree two over .
- The -dimensional real Lie algebra consisting of all skew-symmetric matrices under the product is isotopically simple.
- Under the same product, the -dimensional complex Lie algebra consisting of all skew-Hermitian matrices is isotopically simple.
3.2. Isotopisms of Quasigroups
- Every quasigroup is isotopic to a loop.
- A loop is isotopic to a group if and only the loop is isomorphic to the group, and, hence, it is itself a group.
- Every loop that is isotopic to a Moufang loop is also Moufang.
- Every isotopism of groups constitutes indeed an isomorphism.
- Every abelian quasigroup is isotopic to an abelian group.
4. Development
4.1. Division Algebras
4.2. Semifields
- determined all ternary rings that are isotopic to another one;
- described a constructive method to generate 24 semifields derived from any given semifield;
- characterized isotopic ternary rings that coordinatize isomorphic projective planes; and
- considered nonlinear isotopisms for constructing semifields.
4.3. Alternative Algebras
- The -isotope of an alternative unital algebra is also alternative.
- Every isotopism of a unital alternative algebra constitutes an -homotope of the latter. Moreover, the former is a unital alternative algebra having as a unit element the inverse of .
4.4. Jordan Algebras
4.5. Lie Algebras
- n isotopism classes of n-dimensional pre-filiform Lie algebras over any finite field;
- five isotopism classes of six-dimensional filiform Lie algebras over any field;
- eight isotopism classes of seven-dimensional filiform Lie algebras over any algebraically closed or finite field of characteristic distinct of two or three;
- ten isotopism classes of seven-dimensional filiform Lie algebras over any algebraically closed or finite field of characteristic two.
- nine isotopism classes of seven-dimensional filiform Lie algebras over any algebraically closed or finite field of characteristic three.
4.6. Malcev Algebras
- Every three-dimensional Malcev algebra is isotopic to a Lie magma algebra.
- There exist four isotopism classes of three-dimensional Malcev algebras over any finite field.
- Every four-dimensional Malcev algebra is isotopic to a Lie algebra.
- There exist eight isotopism classes of four-dimensional Malcev algebras over any finite field.
4.7. Genetic and Evolution Algebras
- , for all such that ; and
- , for all and some structure constants .
4.8. Quasigroups, Latin Squares and Related Structures
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Albert, A.A. Non-Associative Algebras: I. Fundamental Concepts and Isotopy. Ann. Math. 1942, 43, 685–707. [Google Scholar] [CrossRef]
- Albert, A.A. Quasigroups I. Trans. Am. Math. Soc. 1943, 54, 507–519. [Google Scholar] [CrossRef]
- Albert, A.A. Quasigroups II. Trans. Am. Math. Soc. 1944, 55, 401–419. [Google Scholar] [CrossRef]
- Bruck, R.H. Some results in the theory of quasigroups. Trans. Am. Math. Soc. 1944, 55, 19–52. [Google Scholar] [CrossRef]
- Poincaré, H. Analysis Situs. Journal de l’École Polytechnique 1895, 1, 1–121. [Google Scholar]
- Poincaré, H. Fifth supplement to Analysis Situs. Rend. Circ. Matem. Palermo 1904, 18, 45–110. [Google Scholar] [CrossRef]
- Dehn, M.; Heegaard, P. Analysis Situs. In Enzyklopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen; Leipzig, B.G., Teubner, B.D., III, Teil, I., Hälfte, I., Eds.; B.G. Teubner Verlag: Leipzig, Germany, 1907; pp. 153–220. [Google Scholar]
- Tietze, H. Über die topologischen Invarianten mehrdimensionaler Mannigfaltigkeiten. Monatsh. Math. Phys. 1908, 19, 1–118. [Google Scholar] [CrossRef]
- Brouwer, L.E.J. Beweis der Invarianz der Dimensionenzahl. Math. Ann. 1911, 70, 161–165. [Google Scholar] [CrossRef]
- Brouwer, L.E.J. Continuous one-one transformations of surfaces in themselves. In V Proceedings of Koninklijke Nederlandse Akademie van Wetenschappen; Royal Netherlands Academy of Arts and Sciences: Amsterdam, The Netherlands, 1912; pp. 352–361. [Google Scholar]
- Veblen, O. Theory on Plane Curves in Non-metrical Analysis Situs. Trans. Am. Math. Soc. 1905, 6, 83–98. [Google Scholar] [CrossRef]
- Veblen, O. Analysis Situs. In The Cambridge Colloquium 1916; American Mathematical Society: New York, NY, USA, 1922. [Google Scholar]
- McLarty, C. Emmy Noether’s “set theoretic” topology, From Dedekind to the first functors. In The Architecture of Modern Mathematics, Essays in History and Philosophy; Ferreirós, J., Gray, J., Eds.; Oxford University Press: Oxford, UK, 2006; pp. 187–208. ISBN 978-0-198-56793-6. [Google Scholar]
- Vietoris, L. Über den höheren Zusammenhang kompakter Räume und eine Klasse von zusammenhangstreuen Abbildungen. Math. Ann. 1927, 97, 454–472. [Google Scholar] [CrossRef]
- Hopf, H. Eine Verallgemeinerung der Euler-Poincaréschen Formel. In Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse; Akademie der Wissenschaften: Göttingen, Germany, 1928; pp. 127–136. [Google Scholar]
- Mayer, W. Über abstrakte Topologie. Monatshefte für Mathematik und Physik 1929, 36, 1–42. [Google Scholar] [CrossRef]
- Alexandroff, P. Untersuchungen Über Gestalt und Lage Abgeschlossener Mengen Beliebiger Dimension. Ann. Math. 1929, 30, 101–187. [Google Scholar] [CrossRef]
- Čech, E. Höherdimensionale Homotopiegruppen. In Verhandlungen des InternationalenMathematiker-Kongresses Zürich 1932; Orell Füssli: Zürich, Switzerland, 1932; p. 203. [Google Scholar]
- Čech, E. Théorie générale de l’homologie dans un espace quelconque. Fund. Math. 1932, 19, 149–183. [Google Scholar] [CrossRef]
- Hurewicz, W. Beiträge zur Topologie der Deformationen I. Höherdimensionale Homotopiegruppen. Proc. Koninkl. Akad. Amst. 1935, 38, 112–119. [Google Scholar]
- Hurewicz, W. Beiträge zur Topologie der Deformationen II. Homotopie- und Homologiegruppen. Proc. Koninkl. Akad. Amst. 1935, 38, 521–528. [Google Scholar]
- Hurewicz, W. Beiträge zur Topologie der Deformationen III. Klassen und Homologietypen von Abbidungen. Proc. Koninkl. Akad. Amst. 1936, 39, 117–126. [Google Scholar]
- Hurewicz, W. Beiträge zur Topologie der Deformationen IV. Asphärische Räumen. Proc. Koninkl. Akad. Amst. 1936, 39, 215–224. [Google Scholar]
- Hopf, H. Ein topologischer Beitrag zur reellen Algebra. Comment. Math. Helvetici 1940, 13, 219–239. [Google Scholar] [CrossRef]
- Albert, A.A. A determination of all normal division algebras in sixteen units. Trans. Am. Math. Soc. 1929, 31, 253–260. [Google Scholar] [CrossRef]
- Wedderburn, J.H.M. On hypercomplex numbers. Proc. Lond. Math. Soc. 1908, VI, 77–118. [Google Scholar] [CrossRef]
- Frobenius, F.G. Über lineare Substitutionen und bilineare Formen. Journal Für Die Reine und Angewandte Mathematik 1878, 84, 1–63. [Google Scholar] [CrossRef]
- Hurwitz, A. Über die Composition der quadratischen Formen von beliebig vielen Variabeln. Goett. Nachr. 1898, 1898, 309–316. [Google Scholar]
- Wedderburn, J.H.M. A theorem on finite algebras. Trans. Am. Math. Soc. 1905, 6, 349–352. [Google Scholar] [CrossRef]
- Slaught, H.E. The April meeting of the Chicago Section. Bull. Am. Math. Soc. 1906, 12, 434–446. [Google Scholar] [CrossRef]
- Dickson, L.E. On commutative linear algebras in which division is always uniquely possible. Trans. Am. Math. Soc. 1906, 7, 514–522. [Google Scholar] [CrossRef]
- Dickson, L.E. Linear algebras in which division is always uniquely possible. Trans. Am. Math. Soc. 1906, 7, 370–390. [Google Scholar] [CrossRef]
- Dickson, L.E. On triple algebras and ternary cubic forms. Bull. Am. Math. Soc. 1908, 14, 160–169. [Google Scholar] [CrossRef]
- Dickson, L.E. Linear algebras with associativity not assumed. Duke Math. J. 1935, 1, 113–125. [Google Scholar] [CrossRef]
- Dickson, L.E. Linear associative algebras and abelian equations. Trans. Am. Math. Soc. 1914, 15, 31–46. [Google Scholar] [CrossRef]
- Wedderburn, J.H.M. A type of primitive algebra. Trans. Am. Math. Soc. 1914, 15, 162–166. [Google Scholar] [CrossRef]
- Wedderburn, J.H.M. On division algebras. Trans. Am. Math. Soc. 1921, 22, 129–135. [Google Scholar] [CrossRef]
- Dickson, L.E. Algebras and their Arithmetics; University of Chicago Press: Chicago, IL, USA, 1923. [Google Scholar]
- Dickson, L.E. Algebren und Ihre Zahlentheorie; Orell Füssli: Zurich, Switzerland, 1927. [Google Scholar]
- Hurwitz, A. Über die Komposition der quadratischen Formen. Math. Ann. 1923, 88, 1–25. [Google Scholar] [CrossRef]
- Roquette, P.J. The Brauer-Hasse-Noether Theorem in Historical Perspective; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 3-540-23005-X. [Google Scholar]
- Cecioni, F. Sopra un tipo di algebre prive di divisori dello zero. Rend. Circ. Matem. Palermo 1923, XLVII, 209–254. [Google Scholar] [CrossRef]
- Brauer, R. Über Systeme hyperkomplexer Zahlen. Math. Z. 1929, 30, 79–107. [Google Scholar] [CrossRef]
- Albert, A.A. New results in the theory of normal division algebras. Trans. Am. Math. Soc. 1930, 32, 171–195. [Google Scholar] [CrossRef]
- Hasse, H. Über ℘-adische Schiefkörpe und ihre Bedeutung für die Arithmetik hyperkomplexer Zahlsysteme. Math. Ann. 1931, 104, 495–534. [Google Scholar] [CrossRef]
- Albert, A.A. A construction of non-cyclic normal division algebras. Bull. Am. Math. Soc. 1932, 38, 449–456. [Google Scholar] [CrossRef]
- Brauer, R. Untersuchungen über die arithmetischen Eigenschaften von Gruppen linearer Substitutionen, Zweite Mitteilung. Math. Z. 1930, 31, 733–747. [Google Scholar] [CrossRef]
- Albert, A.A. Normal Division Algebras of Degree 4 Over F of Characteristic 2. Am. J. Math. 1934, 56, 75–86. [Google Scholar] [CrossRef]
- Albert, A.A. Normal division algebras over a modular field. Trans. Am. Math. Soc. 1934, 36, 388–394. [Google Scholar] [CrossRef]
- Brauer, R.; Hasse, H.; Noether, E. Beweis eines Hauptsatzes in der Theorie der Algebren. J. Reine Angew. Math. 1932, 167, 399–404. [Google Scholar] [CrossRef]
- Albert, A.A.; Hasse, H. A determination of all normal division algebras over an algebraic number field. Trans. Am. Math. Soc. 1932, 34, 722–726. [Google Scholar] [CrossRef]
- Fenster, D.D.; Schwermer, J. A delicate collaboration, Adrian Albert and Helmut Hasse and the principal theorem in division algebras in the early 1930’s. Arch. Hist. Exact Sci. 2005, 59, 349–379. [Google Scholar] [CrossRef]
- Albert, A.A. Division algebras over an algebraic field. Bull. Am. Math. Soc. 1931, 37, 777–784. [Google Scholar] [CrossRef]
- Hasse, H. Theory of cyclic algebras over an algebraic number field. Trans. Am. Math. Soc. 1932, 34, 171–214. [Google Scholar] [CrossRef]
- Albert, A.A. On direct products. Trans. Am. Math. Soc. 1931, 33, 690–711. [Google Scholar] [CrossRef]
- Albert, A.A. Structure of Algebras; American Mathematical Society: New York, NY, USA, 1939; ISBN 978-0-8218-1024-8. [Google Scholar]
- Bruck, R.H. Some results in the theory of linear non-associative algebras. Trans. Am. Math. Soc. 1944, 56, 141–199. [Google Scholar] [CrossRef]
- Hausmann, B.A.; Ore, Ø. Theory of Quasi-Groups. Am. J. Math. 1937, 59, 983–1004. [Google Scholar] [CrossRef]
- Suschkewitsch, A. On a generalization of the associative law. Trans. Am. Math. Soc. 1929, 31, 204–214. [Google Scholar] [CrossRef]
- Frobenius, F.G. Über Endliche Gruppen; Berliner Sitzungsberichte: Berlin, Germany, 1895. [Google Scholar]
- Moore, E.H. A definition of abstract groups. Trans. Am. Math. Soc. 1902, 3, 485–492. [Google Scholar] [CrossRef]
- Dickson, L.E. Definitions of a group and a field by independent postulates. Trans. Am. Math. Soc. 1905, 6, 198–204. [Google Scholar] [CrossRef]
- Moufang, R. Zur Struktur von Alternativkörpern. Math. Ann. 1935, 110, 416–430. [Google Scholar] [CrossRef]
- Murdoch, D.C. Structure of abelian quasi-groups. Trans. Am. Math. Soc. 1941, 49, 392–409. [Google Scholar] [CrossRef]
- Garrison, G.N. Quasi-groups. Ann. Math. 1940, 41, 474–487. [Google Scholar] [CrossRef]
- Griffin, H. The abelian quasi-group. Am. J. Math. 1940, 62, 725–737. [Google Scholar] [CrossRef]
- Bruck, R.H. Contributions to the theory of loops. Trans. Am. Math. Soc. 1946, 60, 245–354. [Google Scholar] [CrossRef]
- Bruck, R.H. Some theorems on Moufang loops. Math. Z. 1960, 73, 59–78. [Google Scholar] [CrossRef]
- Fisher, R.A.; Yates, F. The 6 × 6 Latin squares. Proc. Camb. Philos. Soc. 1934, 30, 492–507. [Google Scholar] [CrossRef]
- Norton, H.W. The 7 × 7 squares. Ann. Eugen. 1939, 9, 269–307. [Google Scholar] [CrossRef]
- Shaw, J.B. On parastrophic algebras. Trans. Am. Math. Soc. 1915, 16, 361–370. [Google Scholar] [CrossRef]
- Etherington, I.M.H. Transposed algebras. Proc. Edinb. Math. Soc. 1945, 7, 104–121. [Google Scholar] [CrossRef]
- Albert, A.A. Finite division algebras and finite planes. Proc. Sympos. Appl. Math. 1960, 10, 53–70. [Google Scholar]
- Hughes, D.R. Collineation Groups of Non-Desarguesian Planes, I, The Hall Veblen-Wedderburn Systems. Am. J. Math. 1959, 81, 921–938. [Google Scholar] [CrossRef]
- Sandler, R. Autotopism groups of some finite non-associative algebras. Am. J. Math. 1962, 84, 239–264. [Google Scholar] [CrossRef]
- Oehmke, R.H.; Sandler, R. The collineation groups of division ring planes. I. Jordan division algebras. J. Reine Angew. Math. 1964, 216, 67–87. [Google Scholar] [CrossRef]
- Petersson, H.P. Quasi composition algebras. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 1971, 35, 215–222. [Google Scholar] [CrossRef]
- Benkart, G.; Osborn, J.M.; Britten, D. On applications of isotopy to real division algebras. Hadron. J. 1981, 4, 497–529. [Google Scholar]
- Darpö, E.; Dieterich, E. Real commutative division algebras. Algebr. Represent. Theory 2007, 10, 179–196. [Google Scholar] [CrossRef]
- Hall, M. Projective planes. Trans. Am. Math. Soc. 1943, 54, 229–277. [Google Scholar] [CrossRef]
- Knuth, D.E. Finite Semifields and Projective Planes. J. Algebra 1965, 2, 182–217. [Google Scholar] [CrossRef]
- Ganley, M.J. Polarities in translation planes. Geometriae Dedicata 1972, 1, 103–116. [Google Scholar] [CrossRef]
- Soubeyran, B. Sur certains semi-corps dérivables et une généralisation des systèmes de Hall et de Kirkpatrick. C. R. Acad. Sci. Paris Sér. A 1974, 278, 851–854. [Google Scholar]
- Ball, S.; Lavrauw, M. On the Hughes-Kleinfeld and Knuth’s semifields two-dimensional over a weak nucleus. Des. Codes Cryptogr. 2007, 44, 63–67. [Google Scholar] [CrossRef]
- Menichetti, G. On a Kaplansky conjecture concerning three-dimensional division algebras over a finite field. J. Algebra 1977, 47, 400–410. [Google Scholar] [CrossRef]
- Albert, A.A. On nonassociative division algebras. Trans. Am. Math. Soc. 1952, 72, 296–309. [Google Scholar] [CrossRef]
- Spille, B.; Pieper-Seier, I. On strong isotopy of Dickson semifields and geometric implications. Results Math. 1998, 33, 364–373. [Google Scholar] [CrossRef]
- Jha, V. Local Schur’s lemma and commutative semifields. Des. Codes Cryptogr. 2005, 36, 203–216. [Google Scholar] [CrossRef]
- Coulter, R.S.; Henderson, M. Commutative presemifields and semifields. Adv. Math. 2008, 217, 282–304. [Google Scholar] [CrossRef]
- Schafer, R.D. Alternative algebras over an arbitrary field. Bull. Am. Math. Soc. 1943, 49, 549–555. [Google Scholar] [CrossRef]
- McCrimmon, K. Homotopes of alternative algebras. Math. Ann. 1971, 191, 253–262. [Google Scholar] [CrossRef]
- Allison, B.N. Conjugate inversion and conjugate isotopes of alternative algebras with involution. Algebras Groups Geom. 1986, 3, 361–385. [Google Scholar]
- Babikov, M. Isotopy and identities in alternative algebras. Proc. Am. Math. Soc. 1997, 125, 1571–1575. [Google Scholar] [CrossRef]
- Pchelintsev, S.V. Isotopes of prime (−1,1)-and Jordan algebras. Algebra Logika 2010, 49, 388–423. [Google Scholar] [CrossRef]
- Petersson, H.P. Isotopisms of Jordan algebras. Proc. Am. Math. Soc. 1969, 20, 477–482. [Google Scholar] [CrossRef]
- Jacobson, N. A coordinatization theorem for Jordan algebras. Proc. Natl. Acad. Sci. USA 1962, 48, 1154–1160. [Google Scholar] [CrossRef] [PubMed]
- Petersson, H.P. The structure group of an alternative algebra. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 2002, 72, 165–186. [Google Scholar] [CrossRef]
- McCrimmon, K. The generic norm of an isotope of a Jordan algebra. Scripta Math. 1973, 29, 229–236. [Google Scholar]
- Loos, O. Generically algebraic Jordan algebras over commutative rings. J. Algebra 2006, 297, 474–529. [Google Scholar] [CrossRef]
- McCrimmon, K. Inner ideals in quadratic Jordan algebras. Trans. Am. Math. Soc. 1971, 159, 445–468. [Google Scholar] [CrossRef]
- Petersson, H.P. The isotopy problem for Jordan matrix algebras. Trans. Am. Math. Soc. 1978, 244, 185–197. [Google Scholar] [CrossRef]
- Petersson, H.P.; Racine, M.L. Springer forms and the first Tits construction of exceptional Jordan division algebras. Manuscr. Math. 1984, 45, 249–272. [Google Scholar] [CrossRef]
- Thakur, M.L. Isotopy and invariants of Albert algebras. Comment. Math. Helv. 1999, 74, 297–305. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Gestal, C.; Pérez-Izquierdo, J.M. Ternary derivations of finite-dimensional real division algebras. Linear Algebra Appl. 2008, 428, 2192–2219. [Google Scholar] [CrossRef]
- Falcón, O.J.; Falcón, R.M.; Núñez, J. Isotopism and isomorphism classes of certain Lie algebras over finite fields. Results Math. 2015, 71, 167–183. [Google Scholar] [CrossRef]
- Falcón, O.J.; Falcón, R.M.; Núñez, J. Isomorphism and isotopism classes of filiform Lie algebras of dimension up to seven. Results Math. 2017, 71, 1151–1166. [Google Scholar] [CrossRef]
- Malcev, A.I. Analytic loops. Mat. Sb. 1955, 36, 569–576. [Google Scholar]
- Sagle, A.A. Malcev algebras. Trans. Am. Math. Soc. 1961, 101, 426–458. [Google Scholar] [CrossRef]
- Falcón, O.J.; Falcón, R.M.; Núñez, J. A computational algebraic geometry approach to enumerate Malcev magma algebras over finite fields. Math. Meth. Appl. Sci. 2016, 39, 4901–4913. [Google Scholar] [CrossRef]
- Etherington, I.M.H. Genetic algebras. Proc. R. Soc. Edinb. 1939, 59, 242–258. [Google Scholar] [CrossRef]
- Bertrand, M. Algèbres non associatives et algèbres génétiques. In Mémorial des Sciences Mathématiques 162; Gauthier-Villars Éditeur: Paris, France, 1966. [Google Scholar]
- Holgate, P. Genetic algebras associated with polyploidy. Proc. Edinb. Math. Soc. 1966, 15, 1–9. [Google Scholar] [CrossRef]
- Ringwood, G.A. Hypergeometric algebras and Mendelian genetics. Nieuw Arch. Wisk. 1985, 3, 69–83. [Google Scholar]
- Campos, T.M.M.; Holgate, P. Algebraic Isotopy in Genetics. IMA J. Math. Appl. Med. Biol. 1987, 4, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.P. Evolution Algebras and their Applications. In Lecture Notes in Mathematics 1921; Springer: Berlin, Germany, 2008. [Google Scholar]
- Tian, J.P.; Vojtechovsky, P. Mathematical concepts of evolution algebras in non-mendelian genetics. Quasigr. Relat. Syst. 2006, 14, 111–122. [Google Scholar]
- Research on Evolution Algebras and Coalgebras. Available online: http://www.webcitation.org/71NV5gpMp (accessed on 2 August 2018).
- Falcón, O.J.; Falcón, R.M.; Núñez, J. Classification of asexual diploid organisms by means of strongly isotopic evolution algebras defined over any field. J. Algebra 2017, 472, 573–593. [Google Scholar] [CrossRef] [Green Version]
- Falcón, O.J.; Falcón, R.M.; Núñez, J. Algebraic computation of genetic patterns related to three-dimensional evolution algebras. Appl. Math. Comput. 2018, 319, 510–517. [Google Scholar] [CrossRef] [Green Version]
- Sade, A. Quasigroupes demi-symétriques. Isotopies préservant la demi-symétrie. Math. Nachr. 1967, 33, 177–188. [Google Scholar] [CrossRef]
- Sade, A. Autotopies des quasigroupes et des systèmes associatifs. Arch. Math. 1968, 4, 1–23. [Google Scholar]
- Sade, A. Critères d’isotopie d’un quasigroupe avec un quasigroupe demi-symétrique. Univ. Lisboa Revista Fac. Ci. 1964/1965, 11, 121–136. [Google Scholar]
- Belousov, V.D. Crossed isotopies of quasigroups. Mat. Issled. 1990, 113, 14–20. [Google Scholar]
- Belousov, V.D.; Onoĭ, V.I. Loops that are isotopic to left-distributive quasigroups. Mat. Issled. 1972, 7, 135–152. [Google Scholar]
- Evans, T. On multiplicative systems defined by generators and relations. II. Monogenic loops. Proc. Camb. Philos. Soc. 1953, 49, 579–589. [Google Scholar] [CrossRef]
- Falconer, E. Isotopes of some special quasigroup varieties. Acta Math. Acad. Sci. Hungar. 1971, 22, 73–79. [Google Scholar] [CrossRef]
- Osborn, J.M. Loops with the weak inverse property. Pac. J. Math. 1960, 10, 295–304. [Google Scholar] [CrossRef] [Green Version]
- Robinson, D.A. A Bol loop isomorphic to all loop isotopes. Proc. Am. Math. Soc. 1968, 19, 671–672. [Google Scholar] [CrossRef]
- Stein, S.K. On the foundations of quasigroups. Trans. Am. Math. Soc. 1957, 85, 228–256. [Google Scholar] [CrossRef]
- Artzy, R. Isotopy and parastrophy of quasigroups. Proc. Am. Math. Soc. 1963, 14, 429–431. [Google Scholar] [CrossRef]
- Aczél, J. Quasigroups, nets and nomograms. Adv. Math. 1965, 1, 383–450. [Google Scholar] [CrossRef]
- Lindner, C.C.; Steedley, D. On the number of conjugates of a quasigroup. Algebra Universalis 1975, 5, 191–196. [Google Scholar] [CrossRef]
- Smith, J.D.H. Finite distributive quasigroups. Math. Proc. Camb. Philos. Soc. 1976, 80, 37–41. [Google Scholar] [CrossRef]
- Drápal, A.; Valent, V. Few associative triples, isotopisms and groups. Des. Codes Cryptogr. 2018, 86, 555–568. [Google Scholar] [CrossRef]
- Deriyenko, I.I. Autotopisms of some quasigroups. Quasigr. Relat. Syst. 2015, 23, 217–220. [Google Scholar]
- McKay, B.D.; Wanless, I.M.; Zhang, X. The order of automorphisms of quasigroups. J. Comb. Des. 2015, 23, 275–288. [Google Scholar] [CrossRef]
- Dudek, W.A. Parastrophes of quasigroups. Quasigr. Relat. Syst. 2015, 23, 221–230. [Google Scholar]
- Grošek, O.; Sýs, M. Isotopy of Latin squares in cryptography. Tatra Mt. Math. Publ. 2010, 45, 27–36. [Google Scholar] [CrossRef]
- Jayéolá, T.G. On middle universal m-inverse quasigroups and their applications to cryptography. An. Univ. Vest Timiş. Ser. Mat. Inform. 2011, 49, 69–87. [Google Scholar]
- Dénes, J.; Keedwell, A.D. Latin Squares and Their Applications; Academic Press: New York, NY, USA, 1974; ISBN 978-0-340-12489-5. [Google Scholar]
- Wanless, I.M.; Ihrig, E.C. Symmetries that Latin squares inherit from 1-factorizations. J. Comb. Des. 2005, 13, 157–172. [Google Scholar] [CrossRef]
- Ihrig, E.C.; Ihrig, B.M. The recognition of symmetric Latin squares. J. Comb. Des. 2008, 16, 291–300. [Google Scholar] [CrossRef]
- McKay, B.D.; Meynert, A.; Myrvold, W. Small Latin squares, quasigroups, and loops. J. Comb. Des. 2007, 15, 98–119. [Google Scholar] [CrossRef]
- Hulpke, A.; Kaski, P.; Östergård, P.R.J. The number of Latin squares of order 11. Math. Comput. 2011, 80, 1197–1219. [Google Scholar] [CrossRef]
- Kotlar, D. Parity types, cycle structures and autotopisms of Latin squares. Electron. J. Comb. 2012, 19, 1–17. [Google Scholar]
- Kotlar, D. Computing the autotopy group of a Latin square by cycle structure. Discret. Math. 2014, 331, 74–82. [Google Scholar] [CrossRef] [Green Version]
- Mendis, M.J.L.; Wanless, I.M. Autoparatopisms of quasigroups and Latin squares. J. Comb. Des. 2016, 25, 51–74. [Google Scholar] [CrossRef]
- Stones, D.S. Symmetries of partial Latin squares. Eur. J. Comb. 2013, 34, 1092–1107. [Google Scholar] [CrossRef]
- Dawson, E.; Donovan, D.; Offer, A. Quasigroups, isotopisms and authentication schemes. Australas. J. Comb. 1996, 13, 75–88. [Google Scholar]
- Falcón, R.M. Latin squares associated to principal autotopisms of long cycles. Application in Cryptography. In Proceedings of Transgressive Computing 2006, a Conference in Honor of Jean Della Dora; Dumas, J.G., Ed.; Universidad de Granada: Granada, Spain, 2006; pp. 213–230. ISBN 84-689-8381-0. [Google Scholar]
- Stones, R.J.; Su, M.; Liu, X.; Wang, G.; Lin, S. A Latin square autotopism secret sharing scheme. Des. Codes Cryptogr. 2015, 80, 635–650. [Google Scholar] [CrossRef] [Green Version]
- Artamonov, V.A.; Chakrabarti, S.; Pal, S.K. Characterization of polynomially complete quasigroups based on Latin squares for cryptographic transformations. Discret. Appl. Math. 2016, 200, 5–17. [Google Scholar] [CrossRef]
- Andres, S.D.; Falcón, R.M. Colouring games based on autotopisms of Latin hyper-rectangles. Quaest. Math. In press.
- Andres, S.D.; Bergold, H.; Falcón, R.M. Autoparatopism stabilized colouring games on rook’s graphs. Electron. Notes Discret. Math. 2018, 68C, 233–238. [Google Scholar] [CrossRef]
- Bailey, R.A. Enumeration of totally symmetric Latin squares. Util. Math. 1979, 15, 193–216, Corrigendum. Util. Math. 1979, 16, 302. [Google Scholar]
- Falcón, R.M. The set of autotopisms of partial Latin squares. Discret. Math. 2013, 313, 1150–1161. [Google Scholar] [CrossRef] [Green Version]
- Falcón, R.M. Enumeration and classification of self-orthogonal partial Latin rectangles by using the polynomial method. Eur. J. Comb. 2015, 48, 215–223. [Google Scholar] [CrossRef] [Green Version]
- Falcón, R.M.; Stones, R.J. Classifying partial Latin rectangles. Electron. Notes Discret. Math. 2015, 49, 765–771. [Google Scholar] [CrossRef] [Green Version]
- Falcón, R.M.; Falcón, O.J.; Núñez, J. Counting and enumerating partial Latin rectangles by means of computer algebra systems and CSP solvers. Math. Methods Appl. Sci. 2018. [Google Scholar] [CrossRef]
- Dietrich, H.; Wanless, I.M. Small partial Latin squares that embed in an infinite group but not into any finite group. J. Symb. Comput. 2018, 86, 142–152. [Google Scholar] [CrossRef] [Green Version]
- Wanless, I.M.; Webb, B.S. Small partial Latin squares that cannot be embedded in a Cayley table. Australas. J. Comb. 2017, 67, 352–363. [Google Scholar]
- Eiran, D.; Falcón, R.M.; Kotlar, D.; Marbach, T.G.; Stones, R.J. Two-line graphs of partial Latin rectangles. Electron. Notes Discret. Math. 2018, 68, 53–58. [Google Scholar]
- Falcón, R.M.; Stones, R.J. Partial Latin rectangle graphs and autoparatopism groups of partial Latin rectangles with trivial autotopism groups. Discret. Math. 2017, 340, 1242–1260. [Google Scholar] [CrossRef]
- Falcón, R.M. Cycle structures of autotopisms of the Latin squares of order up to 11. Ars Comb. 2012, 103, 239–256. [Google Scholar]
- Stones, D.S.; Vojtěchovský, P.; Wanless, I.M. Cycle structure of autotopisms of quasigroups and Latin squares. J. Comb. Des. 2012, 20, 227–263. [Google Scholar] [CrossRef]
- Falcón, R.M.; Martín-Morales, J. Gröbner bases and the number of Latin squares related to autotopisms of order ≤7. J. Symb. Comput. 2007, 42, 1142–1154. [Google Scholar] [CrossRef]
- Evans, T. Embedding incomplete Latin squares. Am. Math. Soc. 1960, 67, 958–961. [Google Scholar] [CrossRef]
- Bryant, D.; Buchanan, M. Embedding partial totally symmetric quasigroups. J. Comb. Theory A 2007, 114, 1046–1088. [Google Scholar] [CrossRef]
- Lindner, C.C.; Cruse, A.B. Small embeddings for partial semisymmetric and totally symmetric quasigroups. J. Lond. Math. Soc. 1976, 12, 479–484. [Google Scholar] [CrossRef]
- Raines, M.E.; Rodger, C.A. Embedding partial extended triple systems and totally symmetric quasigroups. Discret. Math. 1997, 176, 211–222. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falcón, R.M.; Falcón, Ó.J.; Núñez, J. A Historical Perspective of the Theory of Isotopisms. Symmetry 2018, 10, 322. https://doi.org/10.3390/sym10080322
Falcón RM, Falcón ÓJ, Núñez J. A Historical Perspective of the Theory of Isotopisms. Symmetry. 2018; 10(8):322. https://doi.org/10.3390/sym10080322
Chicago/Turabian StyleFalcón, Raúl M., Óscar J. Falcón, and Juan Núñez. 2018. "A Historical Perspective of the Theory of Isotopisms" Symmetry 10, no. 8: 322. https://doi.org/10.3390/sym10080322
APA StyleFalcón, R. M., Falcón, Ó. J., & Núñez, J. (2018). A Historical Perspective of the Theory of Isotopisms. Symmetry, 10(8), 322. https://doi.org/10.3390/sym10080322