Lorentz and CPT Tests Using Penning Traps
Abstract
:1. Introduction
2. Theory
3. Experiment
3.1. Harvard Experiment
3.2. BASE Experiments at Mainz and CERN
4. Sensitivity
5. Summary
Funding
Acknowledgments
Conflicts of Interest
References
- Schneider, G.; Mooser, A.; Bohman, M.; Schön, N.; Harrington, J.; Higuchi, T.; Nagahama, H.; Sellner, S.; Smorra, C.; Blaum, K.; et al. Double-trap measurement of the proton magnetic moment at 0.3 parts per billion precision. Science 2017, 358, 1081. [Google Scholar]
- Smorra, C.; Sellner, S.; Borchert, M.J.; Harrington, J.A.; Higuchi, T.; Nagahama, H.; Tanaka, T.; Mooser, A.; Schneider, G.; Bohman, M.; et al. A parts-per-billion measurement of the antiproton magnetic moment. Nature 2017, 550, 371. [Google Scholar]
- Hanneke, D.; Hoogerheide, S.F.; Gabrielse, G. Cavity control of a single-electron quantum cyclotron: Measuring the electron magnetic moment. Phys. Rev. A 2011, 83, 052122. [Google Scholar]
- Hoogerheide, S.F.; Dorr, J.C.; Novitski, E.; Gabrielse, G. High efficiency positron accumulation for high-precision magnetic moment experiments. Rev. Sci. Instrum. 2015, 86, 053301. [Google Scholar] [Green Version]
- Gabrielse, G.; Fayer, S.E.; Myers, T.G.; Fan, X. Towards an improved test of the Standard Model’s most precise prediction. Atoms 2019, 7, 45. [Google Scholar]
- Kostelecký, V.A.; Samuel, S. Spontaneous breaking of Lorentz symmetry in string theory. Phys. Rev. D 1989, 39, 683. [Google Scholar]
- Kostelecký, V.A.; Potting, R. CPT and strings. Nucl. Phys. B 1991, 359, 545. [Google Scholar]
- Kostelecký, V.A.; Russell, N. Data tables for Lorentz and CPT violation. Rev. Mod. Phys. 2011, 83, 11. [Google Scholar]
- Colladay, D.; Kostelecký, V.A. CPT violation and the Standard Model. Phys. Rev. D 1997, 55, 6760. [Google Scholar]
- Colladay, D.; Kostelecký, V.A. Lorentz-violating extension of the Standard Model. Phys. Rev. D 1998, 58, 116002. [Google Scholar]
- Kostelecký, V.A. Gravity, Lorentz violation, and the Standard Model. Phys. Rev. D 2004, 69, 105009. [Google Scholar]
- Greenberg, O.W. CPT violation implies violation of Lorentz invariance. Phys. Rev. Lett. 2002, 89, 231602. [Google Scholar]
- Kostelecký, V.A.; Lehnert, R. Stability, causality, and Lorentz and CPT violation. Phys. Rev. D 2001, 63, 065008. [Google Scholar]
- Drummond, I.T. Quantum field theory in a multimetric background. Phys. Rev. D 2013, 88, 025009. [Google Scholar]
- Kostelecký, V.A. Riemann-Finsler geometry and Lorentz-violating kinematics. Phys. Lett. B 2011, 701, 137. [Google Scholar]
- Silva, J.E.G.; Maluf, R.V.; Almeida, C.A.S. A nonlinear dynamics for the scalar field in Randers spacetime. Phys. Lett. B 2017, 766, 263. [Google Scholar]
- Foster, J.; Lehnert, R. Classical-physics applications for Finsler b space. Phys. Lett. B 2015, 746, 164. [Google Scholar]
- Edwards, B.; Kostelecký, V.A. Riemann-Finsler geometry and Lorentz-violating scalar fields. Phys. Lett. B 2018, 786, 319. [Google Scholar]
- Cambiaso, M.; Lehnert, R.; Potting, R. Asymptotic states and renormalization in Lorentz-violating quantum field theory. Phys. Rev. D 2014, 90, 065003. [Google Scholar] [Green Version]
- Belich, H.; Bernald, L.D.; Gaete, P.; Helayël-Neto, J.A.; Leal, F.J.L. Aspects of CPT-even Lorentz-symmetry violating physics in a supersymmetric scenario. Eur. Phys. J. C 2015, 75, 291. [Google Scholar]
- Carroll, S.M.; Harvey, J.A.; Kostelecký, V.A.; Lane, C.D.; Okamoto, T. Noncommutative field theory and Lorentz violation. Phys. Rev. Lett. 2001, 87, 141601. [Google Scholar]
- Chaichian, M.; Sheikh-Jabbari, M.M.; Tureanu, A. Non-commutativity of space-time and the hydrogen atom spectrum. Eur. Phys. J. C 2004, 36, 251. [Google Scholar]
- Hayakawa, M. Perturbative analysis on infrared aspects of noncommutative QED on R4. Phys. Lett. B 2000, 478, 394. [Google Scholar]
- Bluhm, R.; Kostelecký, V.A.; Russell, N. Testing CPT with anomalous magnetic moments. Phys. Rev. Lett. 1997, 79, 1432. [Google Scholar]
- Bluhm, R.; Kostelecký, V.A.; Russell, N. CPT and Lorentz tests in Penning traps. Phys. Rev. D 1998, 57, 3932. [Google Scholar]
- Dehmelt, H.G.; Mittleman, R.K.; Van Dyck, R.S.; Schwinberg, P. Past electron-positron g − 2 experiments yielded sharpest bound on CPT violation for point particles. Phys. Rev. Lett. 1999, 83, 4694. [Google Scholar]
- Mittleman, R.K.; Ioannou, I.I.; Dehmelt, H.G.; Russell, N. Bound on CPT and Lorentz symmetry with a trapped electron. Phys. Rev. Lett. 1999, 83, 2116. [Google Scholar]
- Hanneke, D. Cavity Control in a Single-Electron Quantum Cyclotron: An Improved Measurement of the Electron Magnetic Moment. Ph.D. Thesis, Harvard University, Cambridge, MA, USA, 2007. [Google Scholar]
- Gabrielse, G.; Khabbaz, A.; Hall, D.S.; Heimann, C.; Kalinowsky, H.; Jhe, W. Precision mass spectroscopy of the antiproton and proton using simultaneously trapped particles. Phys. Rev. Lett. 1999, 82, 3198. [Google Scholar]
- Ulmer, S.; Smorra, C.; Mooser, A.; Franke, K.; Nagahama, H.; Schneider, G.; Higuchi, T.; Van Gorp, S.; Blaum, K.; Matsuda, Y.; et al. High-precision comparison of the antiproton-to-proton charge-to-mass ratio. Nature 2015, 524, 196. [Google Scholar]
- Ding, Y.; Kostelecký, V.A. Lorentz-violating spinor electrodynamics and Penning traps. Phys. Rev. D 2016, 94, 056008. [Google Scholar] [Green Version]
- Li, Z.; Kostelecký, V.A. Gauge field theories with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D 2019, 99, 056016. [Google Scholar] [Green Version]
- Bluhm, R.; Kostelecký, V.A.; Lane, C.D. CPT and Lorentz tests with muons. Phys. Rev. Lett. 2000, 84, 1098. [Google Scholar]
- Gomes, A.H.; Kostelecký, V.A.; Vargas, A. Laboratory tests of Lorentz and C P T symmetry with muons. Phys. Rev. D 2014, 90, 076009. [Google Scholar]
- Kostelecký, V.A.; Vargas, A. Lorentz and CPT Tests with Clock-Comparison Experiments. Phys. Rev. D 2018, 98, 036003. [Google Scholar]
- Kostelecký, V.A.; Vargas, A. Lorentz and CPT tests in hydrogen, antihydrogen, and related systems. Phys. Rev. D 2015, 92, 056002. [Google Scholar]
- Kostelecký, V.A.; Mewes, M. Fermions with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D 2013, 88, 096006. [Google Scholar]
- Kostelecký, V.A.; Mewes, M. Electrodynamics with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D 2009, 80, 015020. [Google Scholar] [Green Version]
- Kostelecký, V.A.; Mewes, M. Neutrinos with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D 2012, 85, 096005. [Google Scholar]
- Kostelecký, V.A.; Mewes, M. Testing local Lorentz invariance with gravitational waves. Phys. Lett. B 2016, 757, 510. [Google Scholar]
- Brown, L.S.; Gabrielse, G. Geonium theory: Physics of a single electron or ion in a Penning trap. Rev. Mod. Phys. 1986, 58, 233. [Google Scholar]
- Kostelecký, V.A.; Lane, C.D. Constraints on Lorentz Violation from Clock-Comparison Experiments. Phys. Rev. D 1999, 60, 116010. [Google Scholar]
- Kostelecký, V.A.; Mewes, M. Signals for Lorentz violation in electrodynamics. Phys. Rev. D 2002, 66, 056005. [Google Scholar] [Green Version]
- Mooser, A.; Ulmer, S.; Blaum, K.; Franke, K.; Kracke, H.; Leiteritz, C.; Quint, W.; Rodegheri, C.C.; Smorra, C.; Walz, J. Direct high-precision measurement of the magnetic moment of the proton. Nature 2014, 509, 596. [Google Scholar]
- Meiners, T.; Niemann, M.; Paschke, A.G.; Borchert, M.; Idel, A.; Mielke, J.; Voges, K.; Bautista-Salvador, A.; Lehnert, R.; Ulmer, S.; et al. Towards sympathetic laser cooling and detection of single (anti-)protons. In Proceedings of the Seventh Meeting on CPT and Lorentz Symmetry; Kostelecký, V.A., Ed.; World Scientific: Singapore, 2017. [Google Scholar]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, Y. Lorentz and CPT Tests Using Penning Traps. Symmetry 2019, 11, 1220. https://doi.org/10.3390/sym11101220
Ding Y. Lorentz and CPT Tests Using Penning Traps. Symmetry. 2019; 11(10):1220. https://doi.org/10.3390/sym11101220
Chicago/Turabian StyleDing, Yunhua. 2019. "Lorentz and CPT Tests Using Penning Traps" Symmetry 11, no. 10: 1220. https://doi.org/10.3390/sym11101220
APA StyleDing, Y. (2019). Lorentz and CPT Tests Using Penning Traps. Symmetry, 11(10), 1220. https://doi.org/10.3390/sym11101220