An Operator Method for the Stability of Inhomogeneous Wave Equations
Abstract
:1. Introduction
2. Preliminaries
- (i)
- exists for each ;
- (ii)
- exists for any .Moreover, assume that is a function such that:
- (iii)
- exists.
3. Main Results
4. Discussions
Author Contributions
Funding
Conflicts of Interest
References
- Ulam, S.M. Problems in Modern Mathematics; Wiley: New York, NY, USA, 1964. [Google Scholar]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [PubMed]
- Obłoza, M. Hyers stability of the linear differential equation. Rocznik Nauk.-Dydakt. Prace Mat. 1993, 13, 259–270. [Google Scholar]
- Obłoza, M. Connections between Hyers and Lyapunov stability of the ordinary differential equations. Rocznik Nauk.-Dydakt. Prace Mat. 1997, 14, 141–146. [Google Scholar]
- Alsina, C.; Ger, R. On some inequalities and stability results related to the exponential function. J. Inequal. Appl. 1998, 2, 373–380. [Google Scholar] [CrossRef]
- Brzdȩk, J.; Popa, D.; Raşa, I. Hyers-Ulam stability with respect to gauges. J. Math. Anal. Appl. 2017, 453, 620–628. [Google Scholar] [CrossRef]
- Brzdȩk, J.; Popa, D.; Raşa, I.; Xu, B. Mathematical Analysis and Its Applications. In Ulam Stability of Operators; Academic Press Elsevier: Cambridge, MA, USA, 2018; Volume 1. [Google Scholar]
- Gselmann, E. Stability properties in some classes of second order partial differential equations. Results. Math. 2014, 65, 95–103. [Google Scholar] [CrossRef]
- Hyers, D.H.; Isac, G.; Rassias, T.M. Stability of Functional Equations in Several Variables; Birkhäuser: Boston, MA, USA, 1998. [Google Scholar]
- Jung, S.-M. Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis; Springer Optimization and Its Applications; Springer: New York, NY, USA, 2011; Volume 48. [Google Scholar]
- Moszner, Z. Stability has many names. Aequationes Math. 2016, 90, 983–999. [Google Scholar] [CrossRef] [Green Version]
- Popa, D.; Raşa, I. On the Hyers-Ulam stability of the linear differential equation. J. Math. Anal. Appl. 2011, 381, 530–537. [Google Scholar] [CrossRef]
- Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Takahasi, S.-E.; Miura, T.; Miyajima, S. On the Hyers-Ulam stability of the Banach space-valued differential equation y′ = λy. Bull. Korean Math. Soc. 2002, 39, 309–315. [Google Scholar] [CrossRef]
- Wang, G.; Zhou, M.; Sun, L. Hyers-Ulam stability of linear differential equations of first order. Appl. Math. Lett. 2008, 21, 1024–1028. [Google Scholar] [CrossRef]
- Prástaro, A.; Rassias, T.M. Ulam stability in geometry of PDE’s. Nonlinear Funct. Anal. Appl. 2003, 8, 259–278. [Google Scholar]
- Choi, G.; Jung, S.M. A dilation invariance method and the stability of inhomogeneous wave equations. Mathematics 2019, 7, 70. [Google Scholar] [CrossRef]
- Jung, S.-M. Hyers-Ulam stability of linear differential equations of first order, II. Appl. Math. Lett. 2006, 19, 854–858. [Google Scholar] [CrossRef]
- Jung, S.-M. On the stability of one-dimensional wave equation. Sci. World J. 2013, 2013, 978754. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.-M. On the stability of wave equation. Abstr. Appl. Anal. 2013, 2013, 910565. [Google Scholar] [CrossRef]
- Jung, S.-M.; Lee, K.-S. Hyers-Ulam stability of first order linear partial differential equations with constant coefficients. Math. Inequal. Appl. 2007, 10, 261–266. [Google Scholar] [CrossRef]
- Jung, S.-M.; Min, S. Stability of the wave equation with a source. J. Funct. Spaces 2018, 2018, 8274159. [Google Scholar] [CrossRef]
- Jung, S.-M.; Roh, J. Approximation property of the stationary Stokes equations with the periodic boundary condition. J. Funct. Spaces 2018, 2018, 5138414. [Google Scholar] [CrossRef]
- Guariglia, E. Harmonic symmetry of the Riemann zeta fractional derivative. AIP Conf. Proc. 2018, 2046, 020035. [Google Scholar]
- Kiselev, A.P.; Perel, M.V. Highly localized solutions of the wave equation. J. Math. Phys. 2000, 41, 1934–1955. [Google Scholar] [CrossRef]
- Nezzaa, E.D.; Palatuccia, G.; Valdinoci, E. Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 2012, 136, 521–573. [Google Scholar] [CrossRef]
- Perel, M.V.; Sidorenko, M.S. Wavelet-based integral representation for solutions of the wave equation. J. Phys. A Math. Theor. 2009, 42, 3752–3763. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Zaitsev, V.F. Handbook of Exact Solutions for Ordinary Differential Equations, 2nd ed.; Chapman & Hall/CRC: Boca Raton, FL, USA, 2003. [Google Scholar]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 8th ed.; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
Theorem 1 | X | t | a | b | |||||
---|---|---|---|---|---|---|---|---|---|
(17) | r | 0 | c |
Theorem 1 | X | t | a | b | |||||
---|---|---|---|---|---|---|---|---|---|
(20) | r | 0 | c | 0 | (20) |
Theorem 1 | X | t | a | b | |||||
---|---|---|---|---|---|---|---|---|---|
(33) | r | c | ∞ |
Theorem 1 | X | t | a | b | |||||
---|---|---|---|---|---|---|---|---|---|
(35) | r | c | ∞ | 0 | (35) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, G.; Jung, S.-M.; Roh, J. An Operator Method for the Stability of Inhomogeneous Wave Equations. Symmetry 2019, 11, 324. https://doi.org/10.3390/sym11030324
Choi G, Jung S-M, Roh J. An Operator Method for the Stability of Inhomogeneous Wave Equations. Symmetry. 2019; 11(3):324. https://doi.org/10.3390/sym11030324
Chicago/Turabian StyleChoi, Ginkyu, Soon-Mo Jung, and Jaiok Roh. 2019. "An Operator Method for the Stability of Inhomogeneous Wave Equations" Symmetry 11, no. 3: 324. https://doi.org/10.3390/sym11030324
APA StyleChoi, G., Jung, S. -M., & Roh, J. (2019). An Operator Method for the Stability of Inhomogeneous Wave Equations. Symmetry, 11(3), 324. https://doi.org/10.3390/sym11030324