Application of Neutrosophic Logic to Evaluate Correlation between Prostate Cancer Mortality and Dietary Fat Assumption
Abstract
:1. Introduction
2. Material Methods
2.1. Data Description
2.2. Study Participants
2.3. Study Outcomes
2.4. Statistical Methods
3. Results
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lin, P.-H.; Liu, J.-M.; Hsu, R.-J.; Chuang, H.-C.; Chang, S.-W.; Pang, S.-T.; Chang, Y.-H.; Chuang, C.-K.; Lin, S.-K. Depression negatively impacts survival of patients with metastatic prostate cancer. Int. J. Environ. Res. Public Health 2018, 15, 2148. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2017. CA Cancer J. Clin. 2017, 67, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Rahib, L.; Smith, B.D.; Aizenberg, R.; Rosenzweig, A.B.; Fleshman, J.M.; Matrisian, L.M. Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the united states. Cancer Res. 2014, 74, 2913–2921. [Google Scholar] [CrossRef] [PubMed]
- Cao, K.; Arthurs, C.; Atta-ul, A.; Millar, M.; Beltran, M.; Neuhaus, J.; Horn, L.-C.; Henrique, R.; Ahmed, A.; Thrasivoulou, C. Quantitative analysis of seven new prostate cancer biomarkers and the potential future of the ‘biomarker laboratory’. Diagnostics 2018, 8, 49. [Google Scholar] [CrossRef] [PubMed]
- Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin. 2015, 65, 87–108. [Google Scholar] [CrossRef] [PubMed]
- Jemal, A.; Siegel, R.; Ward, E.; Murray, T.; Xu, J.; Smigal, C.; Thun, M.J. Cancer statistics, 2006. CA Cancer J. Clin. 2006, 56, 106–130. [Google Scholar] [CrossRef] [PubMed]
- Arnold, L.D.; Patel, A.V.; Yan, Y.; Jacobs, E.J.; Thun, M.J.; Calle, E.E.; Colditz, G.A. Are racial disparities in pancreatic cancer explained by smoking and overweight/obesity? Cancer Epidemiol. Prev. Biomarkers 2009, 18, 2397–2405. [Google Scholar] [CrossRef] [PubMed]
- Scarton, L.; Yoon, S.; Oh, S.; Agyare, E.; Trevino, J.; Han, B.; Lee, E.; Setiawan, V.; Permuth, J.; Schmittgen, T. Pancreatic cancer related health disparities: A commentary. Cancers 2018, 10, 235. [Google Scholar] [CrossRef] [PubMed]
- Applegate, C.; Rowles, J.; Ranard, K.; Jeon, S.; Erdman, J. Soy consumption and the risk of prostate cancer: An updated systematic review and meta-analysis. Nutrients 2018, 10, 40. [Google Scholar] [CrossRef] [PubMed]
- Carter, H.B.; Albertsen, P.C.; Barry, M.J.; Etzioni, R.; Freedland, S.J.; Greene, K.L.; Holmberg, L.; Kantoff, P.; Konety, B.R.; Murad, M.H. Early detection of prostate cancer: Aua guideline. J. Urol. 2013, 190, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Wahab, S.A.; Bakheit, C.S.; Al-Alawi, S.M. Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations. Environ. Model. Softw. 2005, 20, 1263–1271. [Google Scholar] [CrossRef]
- Cervigón, R.; Moreno, J.; Reilly, R.; Pérez-Villacastín, J.; Castells, F. Quantification of anaesthetic effects on atrial fibrillation rate by partial least-squares. Physiol. Meas. 2012, 33, 1757. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Chong, I. Correlation analysis to identify the effective data in machine learning: Prediction of depressive disorder and emotion states. Int. J. Environ. Res. Public Health 2018, 15, 1907. [Google Scholar] [CrossRef] [PubMed]
- Karamacoska, D.; Barry, R.J.; Steiner, G.Z. Using principal components analysis to examine resting state eeg in relation to task performance. Psychophysiology 2019, e13327. [Google Scholar] [CrossRef] [PubMed]
- Saritas, I.; Allahverdi, N.; Sert, I.U. A fuzzy expert system design for diagnosis of prostate cancer. a a 2003, 1, 50. [Google Scholar]
- Benecchi, L. Neuro-fuzzy system for prostate cancer diagnosis. Urology 2006, 68, 357–361. [Google Scholar] [CrossRef] [PubMed]
- Saritas, I.; Allahverdi, N.; Sert, I.U. A fuzzy approach for determination of prostate cancer. Int. J. Intelligent Syst. Appl. Eng. 2013, 1, 1–7. [Google Scholar]
- Yuksel, S.; Dizman, T.; Yildizdan, G.; Sert, U. Application of soft sets to diagnose the prostate cancer risk. J. Inequal. Appl. 2013, 2013, 229. [Google Scholar] [CrossRef] [Green Version]
- Fu, J.; Ye, J.; Cui, W. An evaluation method of risk grades for prostate cancer using similarity measure of cubic hesitant fuzzy sets. J. Biomed. Inform. 2018, 87, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Cosma, G.; McArdle, S.E.; Reeder, S.; Foulds, G.A.; Hood, S.; Khan, M.; Pockley, A.G. Identifying the presence of prostate cancer in individuals with psa levels< 20 ng ml− 1 using computational data extraction analysis of high dimensional peripheral blood flow cytometric phenotyping data. Front. Immunol. 2017, 8, 1771. [Google Scholar] [PubMed]
- Al-Dmour, J.A.; Sagahyroon, A.; Al-Ali, A.; Abusnana, S. A fuzzy logic–based warning system for patients classification. Health Inform. J. 2017. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, S.A.; Picek, S.; Jakobovic, D. Classification of cancer data: Analyzing gene expression data using a fuzzy decision tree algorithm. In Operations Research Applications in Health Care Management; Springer: New York, NY, USA, 2018; pp. 327–347. [Google Scholar]
- Guido, R.C.; Addison, P.S.; Walker, J. Introducing wavelets and time--frequency analysis [introduction to the special issue]. IEEE Eng. Med. Biol. Mag. 2009, 28, 13. [Google Scholar] [CrossRef] [PubMed]
- Guido, R.C. Practical and useful tips on discrete wavelet transforms [sp tips & tricks]. IEEE Signal Process. Mag. 2015, 32, 162–166. [Google Scholar]
- Guariglia, E. Entropy and fractal antennas. Entropy 2016, 18, 84. [Google Scholar] [CrossRef]
- Guariglia, E. Spectral Analysis of the Weierstrass-Mandelbrot Function. In Proceedings of the 2017 2nd International Multidisciplinary Conference on Computer and Energy Science (SpliTech), Split, Croatia, 12–14 July 2017; pp. 1–6. [Google Scholar]
- Guariglia, E. Harmonic sierpinski gasket and applications. Entropy 2018, 20, 714. [Google Scholar] [CrossRef]
- Smarandache, F. Neutrosophic logic-a generalization of the intuitionistic fuzzy logic. Multispace Multistruct. Neutrosophic Transdiscip. 2010, 4, 396. [Google Scholar]
- Smarandache, F. Introduction to Neutrosophic Statistics. Infinite Study. 2014. Available online: https://arxiv.org/pdf/1406.2000 (accessed on 2 January 2019).
- Chen, J.; Ye, J.; Du, S.; Yong, R. Expressions of rock joint roughness coefficient using neutrosophic interval statistical numbers. Symmetry 2017, 9, 123. [Google Scholar] [CrossRef]
- Aslam, M. A new sampling plan using neutrosophic process loss consideration. Symmetry 2018, 10, 132. [Google Scholar] [CrossRef]
- Aslam, M. Design of sampling plan for exponential distribution under neutrosophic statistical interval method. IEEE Access 2018, 6, 64153–64158. [Google Scholar] [CrossRef]
- Triola, M.F. Elementary Statistics; Pearson/Addison-Wesley: Reading, MA, USA, 2006. [Google Scholar]
D-Rate | Diet Fat | County No. | D-Rate | Diet Fat | County No. |
---|---|---|---|---|---|
[10.1,10.3] | [97,97] | 16 | [0.9,1.1] | [38,38] | 1 |
[11.4,11.4] | [73,75] | 17 | [1.3,1.3] | [29,31] | 2 |
[11.1,11.1] | [112,112] | 18 | [1.6,1.6] | [42,42] | 3 |
[13.1,13.3] | [100,100] | 19 | [4.5,4.5] | [57,57] | 4 |
[12.9,13.1] | [134,134] | 20 | [4.8,4.10] | [96,98] | 5 |
[13.4,13.4] | [142,142] | 21 | [5.4,5.6] | [47,49] | 6 |
[13.9,14.2] | [119,119] | 22 | [5.5,5.5] | [67,67] | 7 |
[14.4,14.4] | [137,137] | 23 | [5.6,5.6] | [72,74] | 8 |
[14.4,14.6] | [152,152] | 24 | [6.4,6.6] | [93,93] | 9 |
[15.1,15.3] | [129,129] | 25 | [7.8,7.8] | [58,58] | 10 |
[15.9,15.9] | [156,156] | 26 | [8.4,8.6] | [95,95] | 11 |
[16.3,16.4] | [147,147] | 27 | [8.8,8.8] | [67,69] | 12 |
[16.8,16.9] | [133,133] | 28 | [9,9] | [62,62] | 13 |
[18.4,18.4] | [132,132] | 29 | [9.1,9.1] | [96,96] | 14 |
[12.4,12.6] | [143,144] | 30 | [9.4,9.4] | [86,87] | 15 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aslam, M.; Albassam, M. Application of Neutrosophic Logic to Evaluate Correlation between Prostate Cancer Mortality and Dietary Fat Assumption. Symmetry 2019, 11, 330. https://doi.org/10.3390/sym11030330
Aslam M, Albassam M. Application of Neutrosophic Logic to Evaluate Correlation between Prostate Cancer Mortality and Dietary Fat Assumption. Symmetry. 2019; 11(3):330. https://doi.org/10.3390/sym11030330
Chicago/Turabian StyleAslam, Muhammad, and Mohammed Albassam. 2019. "Application of Neutrosophic Logic to Evaluate Correlation between Prostate Cancer Mortality and Dietary Fat Assumption" Symmetry 11, no. 3: 330. https://doi.org/10.3390/sym11030330
APA StyleAslam, M., & Albassam, M. (2019). Application of Neutrosophic Logic to Evaluate Correlation between Prostate Cancer Mortality and Dietary Fat Assumption. Symmetry, 11(3), 330. https://doi.org/10.3390/sym11030330