Time-reversal Symmetry in Antenna Theory
Abstract
:1. Introduction
2. Time-Reversal Symmetry
2.1. General Case
2.2. Time-Harmonic Variation
3. Application to Antenna Theory
3.1. Polarization and Impedance Matching
3.2. Time-Reversed Field Generated with a Far-Field Illumination
4. Conclusions
Funding
Conflicts of Interest
Appendix A
References
- Feynman, R.; Leighton, R.; Sand, M. The Feynman Lectures on Physics; California Institute of Technology: Pasadena, CA, USA, 1963. [Google Scholar]
- Casimir, H.B.G. Reciprocity theorems and irreversible processes. Proc. IEEE 1963, 51, 1570. [Google Scholar] [CrossRef]
- Potton, R.J. Reciprocity in optics. Rep. Prog. Phys. 2004, 67, 717–754. [Google Scholar] [CrossRef]
- Caloz, C.; Alù, A.; Tretyakov, S.; Sounas, D.; Achouri, K.; Deck-Léger, Z.L. Electromagnetic Nonreciprocity. Phys. Rev. Appl. 2018, 10, 047001. [Google Scholar] [CrossRef]
- Onsager, L. Reciprocal relations in irreversible processes I. Phys. Rev. 1931, 37, 405. [Google Scholar]
- Silveirinha, M.G. Hidden Time-Reversal Symmetry in Dissipative Reciprocal Systems. Opt. Express 2019, in press. Available online: https://arxiv.org/abs/1903.02944 (accessed on 3 April 2019).
- Silveirinha, M.G. Chern Invariants for Continuous Media. Phys. Rev. B 2015, 92, 125153. [Google Scholar] [CrossRef]
- Silveirinha, M.G. Topological classification of Chern-type insulators by means of the photonic Green function. Phys. Rev. B 2018, 97, 115146. [Google Scholar] [CrossRef] [Green Version]
- Silveirinha, M.G. Modal expansions in dispersive material systems with application to quantum optics and topological photonics. 2018. Available online: https://arxiv.org/abs/1712.04272 (accessed on 3 April 2019).
- Fernandes, D.E.; Silveirinha, M.G. Asymmetric Transmission and Isolation in Nonlinear Devices: Why They Are Different. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1953. [Google Scholar] [CrossRef]
- Tanter, M.; Thomas, J.L.; Coulouvrat, F.; Fink, M. Breaking of time reversal invariance in nonlinear acoustics. Phys. Rev. E 2001, 64, 016602. [Google Scholar] [CrossRef]
- Shadrivov, I.V.; Fedotov, V.A.; Powell, D.A.; Kivshar, Y.S.; Zheludev, N.I. Electromagnetic wave analogue of an electronic diode. New J. Phys. 2011, 13, 033025. [Google Scholar]
- Mahmoud, A.M.; Davoyan, A.R.; Engheta, N. All-passive nonreciprocal metastructure. Nat. Commun. 2015, 6, 8359. [Google Scholar] [CrossRef] [Green Version]
- Sounas, D.L.; Soric, J.; Alù, A. Broadband Passive Isolators Based on Coupled Nonlinear Resonances. Nat. Electron. 2018, 1, 113–119. [Google Scholar] [CrossRef]
- Maslovski, S.; Tretyakov, S. Phase conjugation and perfect lensing. J. Appl. Phys. 2003, 94, 4241. [Google Scholar] [CrossRef]
- Pendry, J.B. Time Reversal and Negative Refraction. Science 2008, 322, 71–73. [Google Scholar] [CrossRef] [PubMed]
- Silveirinha, M.G. PTD symmetry protected scattering anomaly in optics. Phys. Rev. B 2017, 95, 035153. [Google Scholar] [CrossRef]
- Balanis, C.A. Antenna Theory, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016. [Google Scholar]
- Cassereau, D.; Fink, M. Time-Reversal of Ultrasonic Fields-Part III: Theory of the Closed Time-Reversal Cavity. IEEE Trans. Ultrason. Ferroelectr. Freq. 1992, 39, 579–592. [Google Scholar] [CrossRef] [PubMed]
- Fink, M. Time-Reversed Acoustics. Sci. Am. 1999, 281, 91–97. [Google Scholar] [CrossRef]
- de Rosny, J.; Fink, M. Overcoming the Diffraction Limit in Wave Physics Using a Time-Reversal Mirror and a Novel Acoustic Sink. Phys. Rev. Lett. 2002, 89, 124301. [Google Scholar] [CrossRef] [PubMed]
- Lerosey, G.; de Rosny, J.; Tourin, A.; Derode, A.; Montaldo, G.; Fink, M. Time Reversal of Electromagnetic Waves. Phys. Rev. Lett. 2004, 92, 193904. [Google Scholar] [CrossRef]
- Lerosey, G.; de Rosny, J.; Tourin, A.; Fink, M. Focusing Beyond the Diffraction Limit with Far-Field Time Reversal. Science 2007, 315, 1120. [Google Scholar] [CrossRef] [PubMed]
- de Rosny, J.; Lerosey, G.; Fink, M. Theory of Electromagnetic Time-Reversal Mirrors. IEEE Trans. Antennas Propag. 2010, 58, 3139–3149. [Google Scholar] [CrossRef]
- Andersen, J.B.; Vaughan, R.G. Transmitting, receiving and scattering properties of antennas. IEEE Antennas Propag. Mag. 2003, 45, 93–98. [Google Scholar] [CrossRef]
- Andersen, J.B.; Frandsen, A. Absorption Efficiency of Receiving Antennas. IEEE Trans. Antennas Propag. 2005, 53, 2843–2849. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silveirinha, M.G. Time-reversal Symmetry in Antenna Theory. Symmetry 2019, 11, 486. https://doi.org/10.3390/sym11040486
Silveirinha MG. Time-reversal Symmetry in Antenna Theory. Symmetry. 2019; 11(4):486. https://doi.org/10.3390/sym11040486
Chicago/Turabian StyleSilveirinha, Mário G. 2019. "Time-reversal Symmetry in Antenna Theory" Symmetry 11, no. 4: 486. https://doi.org/10.3390/sym11040486
APA StyleSilveirinha, M. G. (2019). Time-reversal Symmetry in Antenna Theory. Symmetry, 11(4), 486. https://doi.org/10.3390/sym11040486