Extended Degenerate r-Central Factorial Numbers of the Second Kind and Extended Degenerate r-Central Bell Polynomials
Abstract
:1. Introduction
2. Extended Degenerate r-Central Factorial Numbers of the Second Kind and Extended Degenerate r-Central Bell Polynomials
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Carlitz, L. Degenerate Stirling, Bernoulli and Eulerian numbers. Util. Math. 1979, 15, 51–88. [Google Scholar]
- Jeong, J.; Rim, S.-H.; Kim, B.M. On finite-times degenerate Cauchy numbers and polynomials. Adv. Differ. Equ. 2015, 2015, 321. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S. Degenerate central Bell numbers and polynomials. Rev. R. Acad. Clenc. Exactas Fis. Nat. Ser. A Mat. RACSAM 2019. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S. Degenerate Laplace transform and degenerate gamma function. Russ. J. Math. Phys. 2017, 24, 241–248. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, B.M.; Jang, L.-C.; Kwon, J. A note on modified degenerate gamma and Laplace transformation. Symmetry 2018, 10, 471. [Google Scholar] [CrossRef]
- Pyo, S.-S. Degenerate Cauchy numbers and polynomials of the fourth kind. Adv. Stud. Contemp. Math. (Kyungshang) 2018, 28, 127–138. [Google Scholar]
- Upadhyaya, L.M. On the degenerate Laplace transform IV. Int. J. Eng. Sci. Res. 2018, 6, 198–209. [Google Scholar]
- Carlitz, L. Some remarks on the Bell numbers. Fibonacci Quart. 1980, 18, 66–73. [Google Scholar]
- Duran, U.; Acikgoz, M.; Araci, S. On (q,r,w)-Stirling numbers of the second kind. J. Inequal. Spec. Funct. 2018, 9, 9–16. [Google Scholar]
- Kim, T.; Yao, Y.; Kim, D.S.; Jang, G.-W. Degenerate r-Stirling numbers and r-Bell polynomials. Russ. J. Math. Phys. 2018, 25, 44–58. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S.; Kim, G.-W. On central complete and incomplete Bell polynomials I. Symmetry 2019, 11, 288. [Google Scholar] [CrossRef]
- Roman, S. The Umbral Calculus; Pure and Applied Mathematics 111; Academic Press Inc. [Harcourt Brace Jovanovich, Publishers]: New York, NY, USA, 1984. [Google Scholar]
- Simsek, Y. Identities and relations related to combinatorial numbers and polynomials. Proc. Jangjeon Math. Soc. 2017, 20, 127–135. [Google Scholar]
- Simsek, Y. Identities on the Changhee numbers and Apostol-type Daehee polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 2017, 27, 199–212. [Google Scholar]
- Carlitz, L.; Riordan, J. The divided central differences of zero. Can. J. Math. 1963, 15, 94–100. [Google Scholar] [CrossRef]
- Charalambides, C.A. Central factorial numbers and related expansions. Fibonacci Quart. 1981, 19, 451–456. [Google Scholar]
- Kim, D.S.; Dolgy, D.V.; Kim, D.; Kim, T. Some identities on r-central factorial numbers and r-central Bell polynomials. arXiv 2019, arXiv:1903.11689. [Google Scholar]
- Kim, T. A note on central factorial numbers. Proc. Jangjeon Math. Soc. 2018, 21, 575–588. [Google Scholar]
- Kim, T.; Kim, D.S.; Jang, G.-W.; Kwon, J. Extended central factorial polynomials of the second kind. Adv. Differ. Equ. 2019, 2019, 24. [Google Scholar] [CrossRef]
- Zhang, W. Some identities involving the Euler and the central factorinal numbers. Fibonacci Quart. 1998, 36, 154–157. [Google Scholar]
- Butzer, P.L.; Schmidt, M.; Stark, E.L.; Vogt, L. Central factorial numbers; their main properties and some applications. Numer. Funct. Anal. Optim. 1989, 10, 419–488. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S. A note on central Bell numbers and polynomials. Russ. J. Math. Phys. 2019. to appear. [Google Scholar]
- Broder, A.Z. The r-Stirling numbers. Discret. Math. 1984, 49, 241–259. [Google Scholar] [CrossRef]
- Everitt, W.N.; Kwon, K.H.; Littlejohn, L.L.; Wellman, R.; Yoon, G.J. JacobiStirling numbers, Jacobi polynomials, and the left-definite analysis of the classical Jacobi differential expression. J. Comput. Appl. Math. 2007, 208, 29–56. [Google Scholar] [CrossRef]
- Loureiro, A.F. New results on the Bochner condition about classical orthogonal polynomials. J. Math. Anal. Appl. 2010, 364, 307–323. [Google Scholar] [CrossRef]
- Eastwood, M.; Goldschmidt, H. Zero-energy fields on complex projective space. J. Differ. Geom. 2013, 94, 129–157. [Google Scholar] [CrossRef]
- Shadrin, S.; Spitz, L.; Zvonkine, D. On double Hurwitz numbers with completed cycles. J. Lond. Math. Soc. 2012, 86, 407–432. [Google Scholar] [CrossRef]
- Caponetto, R.; Dongola, G.; Fortuna, L.; Gallo, A. New results on the synthesis of FO-PID controllers. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 997–1007. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, T. A Note on Polyexponential and Unipoly Functions. Russ. J. Math. Phys. 2019, 94, 40–49. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.S.; Dolgy, D.V.; Kim, T.; Kim, D. Extended Degenerate r-Central Factorial Numbers of the Second Kind and Extended Degenerate r-Central Bell Polynomials. Symmetry 2019, 11, 595. https://doi.org/10.3390/sym11040595
Kim DS, Dolgy DV, Kim T, Kim D. Extended Degenerate r-Central Factorial Numbers of the Second Kind and Extended Degenerate r-Central Bell Polynomials. Symmetry. 2019; 11(4):595. https://doi.org/10.3390/sym11040595
Chicago/Turabian StyleKim, Dae San, Dmitry V. Dolgy, Taekyun Kim, and Dojin Kim. 2019. "Extended Degenerate r-Central Factorial Numbers of the Second Kind and Extended Degenerate r-Central Bell Polynomials" Symmetry 11, no. 4: 595. https://doi.org/10.3390/sym11040595
APA StyleKim, D. S., Dolgy, D. V., Kim, T., & Kim, D. (2019). Extended Degenerate r-Central Factorial Numbers of the Second Kind and Extended Degenerate r-Central Bell Polynomials. Symmetry, 11(4), 595. https://doi.org/10.3390/sym11040595