A Power Control Algorithm Based on Chicken Game Theory in Multi-Hop Networks
Abstract
:1. Introduction
2. System Model
3. Distributed Chicken Game Algorithm Power Control
4. Simulation Analyses
Algorithm 1 Power control |
1: Initialize the local table. |
2: FUNCTION INIT () |
3: {if t = 0 Then Pi = Pmax; Piinfer = 0; |
Initialize (native_form); |
4: Endif;} |
5: update the local table once system get a new message. |
FUNCTION Deal Message (HI/HELLO) |
6: {if I get HELLO Then update(native_form); Endif;} |
7: determine whether system need to transmit the message according to evaluate the cost from native form. |
8: FUNCTION Send Message (M) |
9: {if i transmits M Then u < = find_payoff(native_form); |
10: Pi < = calculate_trans_power(u); |
11: If M = message then add_infer_area (Piinfer); |
12: Endif; |
13: Endif;} |
- Maximum energy power control algorithm (MAXPCA), by which all the nodes in the networks choose the highest transmission power;
- Minimum energy power control algorithm (MINPCA), by which all the nodes in the networks choose the lowest sending power;
- Distributed chicken game algorithm to power control (DCGAPC), which is the method proposed in this article.
- Reachability—ratio of the figures of the correct messages received compared to the figure of the actual messages received.
- Average latency—how long it takes for a broadcast message to be sent from the source node to all nodes in the network.
- Capacity—maximum data transmission rate for the link with the lowest processing power in the network.
- Energy efficiency—the ratio of the sum figure of the messages received compared to the energy consumed in broadcasting each unit.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kudoh, E.; Adachi, F. Study of a multi-hop communication in a virtual cellular system. In Proceedings of the WPMC—Wireless Personal Multimedia Communiations, Yokosuka, Japan, 19–22 October 2003. [Google Scholar]
- Behzad, A.; Rubin, I. Impact of power control on the performance of Ad hoc wireless networks. In Proceedings of the INFOCOM 2005, Miami, FL, USA, 13–17 March 2005; pp. 102–113. [Google Scholar]
- Wang, J.; Zou, N.; Zhang, Y.; Li, P. Study on Downlink Performance of Multiple Access Algorithm based on Antenna Diversity. ICIC Express Lett. 2015, 9, 1221–1225. [Google Scholar]
- Xu, H.; Guo, C.; Zhang, L. Optimal Power Control in Wireless Powered Sensor Networks: A Dynamic Game-Based Approach. Sensors 2017, 17, 547. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Shao, F.; Ye, S.; Zheng, W. LSRR-LA: An Anisotropy-Tolerant Localization Algorithm Based on Least Square Regularized Regression for Multi-Hop Wireless Sensor Networks. Sensors 2018, 18, 3974. [Google Scholar] [CrossRef] [PubMed]
- Katranaras, E.; Imran, M.A.; Tzaras, C. Uplink capacity of a variable density cellular system with multicell processing. IEEE Trans. Commun. 2009, 57, 2098–2108. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.L.; Ku, S.J. Novel Conversion Matrices for Simplifying the IFFT Computation of an SLM-Based PAPR Reduction Scheme for OFDM Systems. IEEE Trans. Commun. 2009, 57, 1903–1907. [Google Scholar] [CrossRef]
- Lu, G.; Wu, P.; Aronsson, D. Peak-to-Average Power Ratio Reduction in OFDM Using Cyclically Shifted Phase Stages. IET Commun. 2007, 1, 1146–1151. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, S.; Zhang, J. Multi-hop maimal ratio combining (MHMRC) diversity based on virtual cellular network. J. Jilin Univ. 2011, 41, 533–536. [Google Scholar]
- Sklar, B. A primer on turbo code concepts. IEEE Commun. Mag. 1997, 35, 94–101. [Google Scholar] [CrossRef]
- Lin, S.; Costello, D.J., Jr. Error Control Coding: Fundamentals and Applications; Prentice Hill: Upper Saddle River, NJ, USA, 1983. [Google Scholar]
- Li, S.E.; Li, R.; Wang, J.; Hu, X.; Cheng, B.; Li, K. Stabilizing Periodic Control of Automated Vehicle Platoon with Minimized Fuel Consumption. IEEE Trans. Transp. Electrif. 2017, 3, 259–271. [Google Scholar] [CrossRef]
- Zou, Q.-F.; Tan, X.-Z.; Liu, M.; Ma, L. Low complexity frequency domain iterative equalization based on minimum mean square error for single carrier systems. Jilin Daxue Xuebao (Gongxueban) 2015, 45, 2062–2068. [Google Scholar]
- Tian, P.; Xiao, X.; Wang, K.; Ding, R. A Hierarchical Energy Management System Based on Hierarchical Optimization for Microgrid Community Economic Operation. IEEE Trans. Smart Grid 2016, 7, 2230–2241. [Google Scholar] [CrossRef]
- Chen, J.; Li, J.; Yang, S.; Deng, F. Weighted Optimization-Based Distributed Kalman Filter for Nonlinear Target Tracking in Collaborative Sensor Networks. IEEE Trans. Cybern. 2017, 1, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Li, M.; Feng, J. Multi-Feedback Interference Cancellation Algorithms for OFDM Systems over Doubly-Selective Channels. Algorithms 2015, 8, 484–513. [Google Scholar] [CrossRef] [Green Version]
- Vasudevan, K. Coherent Detection of Turbo-Coded OFDM Signals Transmitted Through Frequency Selective Rayleigh Fading Channels with Receiver Diversity and Increased Throughput. Wirel. Pers. Commun. 2015, 82, 1623–1642. [Google Scholar] [CrossRef] [Green Version]
- Shu, S.; Qu, D.; Li, L.; Jiang, T. Invertible Subset QC-LDPC Codes for PAPR Reduction of OFDM Signals. IEEE Trans. Broadcast. 2015, 61, 290–298. [Google Scholar] [CrossRef]
- Zhao, D.-W.; Zhao, H.-L.; Ma, Y.-K.; Jia, M. Enhanced scaled selection combiner for decode-and-forward systems with adaptive modulation. Jilin Daxue Xuebao (Gongxueban) 2016, 46, 671–677. [Google Scholar]
- Wan, L.; Zhou, H.; Xu, X.; Huang, Y.; Zhou, S.; Shi, Z.; Cui, J.-H. Adaptive Modulation and Coding for Underwater Acoustic OFDM. IEEE J. Ocean. Eng. 2015, 40, 327–336. [Google Scholar] [CrossRef]
- Marina, M.; Arno, T.; Emmeric, T.; Vallozzi, L.; Vermeeren, G.; Joseph, W.; Rogier, H.; Martens, L. Diversity Performance of Off-Body MB-OFDM UWB-MIMO. IEEE Trans. Antennas Propag. 2015, 63, 3187–3197. [Google Scholar] [CrossRef] [Green Version]
- Chai, E.; Shin, K. Low-Overhead Control Channels in Wireless Networks. IEEE Trans. Mob. Comput. 2015, 14, 2303–2315. [Google Scholar] [CrossRef]
- Wang, J.; Cao, F.; Zou, N. Multi carrier system joint receiving method based on MAI and ICI. Jilin Daxue Xuebao (Gongxueban) 2018, 41, 301–305. [Google Scholar]
- Al-Awami, A.; Saif, W.A.; Zerguine, A.; Zidouri, A.; Cheded, L. An Adaptive Equalizer Based on Particle Swarm Optimization Techniques. In Proceedings of the ISSPA 2007, Sharjah, UAE, 12–15 February 2007; pp. 12–15. [Google Scholar]
- Hu, M.; Li, Y.; Lu, X.; Zhang, H. Tone Reservation to Minimize Nonlinearity Impact on OFDM Signals. IEEE Trans. Veh. Technol. 2015, 64, 4310–4314. [Google Scholar] [CrossRef]
- Bishwarup, M.; Timothy, T.; Visotsky, E.; Vook, F.W.; Ghosh, A.; Nam, Y.-H.; Li, Y.; Zhang, C.; Zhang, M.; Luo, Q.; et al. 3D channel model in 3GPP. IEEE Commun. Mag. 2015, 53, 16–23. [Google Scholar]
- Guido, R.; Conforti, D. A hybrid genetic approach for solving an integrated multi-objective operating room planning and scheduling problem. Comput. Oper. Res. 2017, 87, 270–282. [Google Scholar] [CrossRef]
- Qiu, X.; Sha, X.-J.; Mei, L. Hybrid carrier CDMA multi-antenna system based on weighted-type fractional Fourier transform. Jilin Daxue Xuebao (Gongxueban) 2013, 43, 218–222. [Google Scholar]
- Guillermo, D.; Rey, P.A.; Wolff, P. Solving the operating room scheduling problem with prioritized lists of patients. Ann. Oper. Res. 2016, 258, 395–414. [Google Scholar]
- Guo, M.; Wu, S.; Li, B.; Song, J.; Rong, Y. Integrated scheduling of elective surgeries and surgical nurses for operating room suites. Flex Serv. Manuf. J. 2016, 28, 166–181. [Google Scholar] [CrossRef]
- Wang, S.; Roshanaei, V.; Aleman, D.M.; Urbach, D.R. A discrete event simulation evaluation of distributed operating room scheduling. IIE Trans. Healthc. Syst. Eng. 2016, 6, 236–245. [Google Scholar] [CrossRef]
- Mauve, M.; Widmer, J.; Hartenstein, H. A survey on position-based routing in mobile ad hoc networks. IEEE Netw. 2001, 30–39. [Google Scholar] [CrossRef]
- Huang, C.; Yates, R. Rate of convergence for minimum power assignment algorithms in cellular radio systems. Wirel. Netw. 1998, 4, 223–231. [Google Scholar] [CrossRef]
- Holland, G.; Vaidya, N. A rate adaptive MAC protocol for multi-hop wireless networks. In Proceedings of the 7th Annual International Conference on Mobile Computing and Networking, ACM MobiCom, Rome, Italy, 16–21 July 2001. [Google Scholar]
- Daou, I.; Kudoh, E.; Adachi, F. Transmit power efficiency of multi-hop MRC diversity for a virtual cellular network. IEICE Trans. Commun. 2005, E88-B, 3643–3648. [Google Scholar] [CrossRef]
- Daou, I.; Kudoh, E.; Adachi, F. Transmit power efficiency of multi-hop hybrid selection/MRC diversity for a DS-CDMA virtual cellular network. In Proceedings of the 62th IEEE VTC, Dallas, TX, USA, 25–28 September 2005. [Google Scholar]
- Luo, J.; Ye, D.; Xue, L.; Fan, M. A survey of multicast routing protocols for mobile Ad-Hoc networks. IEEE Commun. Surv. Tutor. 2009, 11, 78–91. [Google Scholar]
- Adachi, F. Wireless past and future-evolving mobile communication systems. IEICE Trans. Fundam. 2001, E84-A, 55–60. [Google Scholar]
- Sun, Q.; Zeng, X.; Chen, N. A Cross-layer Designed Power Control Algorithm for Wireless Ad Hoc Networks. In Proceedings of the 10th IEEE International Conference on High Performance Computing and Communications, Dalian, China, 25–27 September 2008; pp. 478–485. [Google Scholar]
- Lee, W.C.Y. Mobile Cellular Telecommunication Systems; McGraw-Hill: New York, NY, USA, 1989. [Google Scholar]
- Han, G.Y.; Song, J. Extensions of the I-MMSE Relationship to Gaussian Channels with Feedback and Memory. IEEE Trans. Inf. Theory 2016, 62, 5422–5445. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Zhang, S. Pseudorange Measurement Method Based on AIS Signals. Sensors 2017, 17, 1183. [Google Scholar] [CrossRef]
- Zheng, K.; Hu, Q.; Zhang, J.B. Positioning Error Analysis of Ranging-Mode Using AIS Signals in China. J. Sens. 2016, 2016, 6928961. [Google Scholar] [CrossRef]
Nodes ID | Distance | Interference | Gain |
---|---|---|---|
ID1 | di1 | p1infer | ui1 |
ID2 | di2 | p2infer | ui2 |
ID3 | di3 | p3infer | ui3 |
… | … | … | … |
Parameters (Unit) | Values |
---|---|
Simulation area (m2) | |
Figure of the nodes | 50 |
Communications protocol | CSMA/CA (Carrier Sense multiple Access/Collision Avoidance) |
Route protocol | Flooding |
Bandwidth (Mbps) | 2 |
Required BER (Bit Error Ratio) | 10−2 |
The max sending power of the node(mw) | 2.5 |
The max coverage radius of the node(m) | 230 |
SNR(dB) | 13 |
Path decay parameter | = 3–4 |
Standard deviation of the shadowing loss | |
Number of paths | L = 16 |
Power delay profile | Exponential |
Decay factor | |
Environmental noise (dBm) | −120 |
DCGAPC (s/packet) | 0.01–2 |
Traffic Rate (Packets/s) | Average Received Packets in MAXPCA (Packets/s) | Average Received Packets in DNGAPC (Packets/s) | Average Received Packets in MINPCA (Packets/s) |
---|---|---|---|
100 | 18,521.23 | 17,099.79 | 14,582.11 |
50 | 23,019.76 | 22,693.27 | 20,004.04 |
34 | 26,888.89 | 26,573.79 | 19,192.84 |
25 | 21,078.25 | 20,505.26 | 12,365.07 |
20 | 16,891.68 | 16,462.47 | 10,921.1 |
17 | 14,114.03 | 13,728.13 | 9737.36 |
15 | 12,094.9 | 11,760.88 | 8717.33 |
13 | 10,575.78 | 10,290.26 | 7850.96 |
11 | 9402.22 | 9174.83 | 7157.29 |
10 | 8443.6 | 8255.2 | 6513.05 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zhengpeng, Y.; Gillbanks, J.; Sanders, T.M.; Zou, N. A Power Control Algorithm Based on Chicken Game Theory in Multi-Hop Networks. Symmetry 2019, 11, 718. https://doi.org/10.3390/sym11050718
Wang J, Zhengpeng Y, Gillbanks J, Sanders TM, Zou N. A Power Control Algorithm Based on Chicken Game Theory in Multi-Hop Networks. Symmetry. 2019; 11(5):718. https://doi.org/10.3390/sym11050718
Chicago/Turabian StyleWang, Jinpeng, Ye Zhengpeng, Jeremy Gillbanks, Tarun M. Sanders, and Nianyu Zou. 2019. "A Power Control Algorithm Based on Chicken Game Theory in Multi-Hop Networks" Symmetry 11, no. 5: 718. https://doi.org/10.3390/sym11050718
APA StyleWang, J., Zhengpeng, Y., Gillbanks, J., Sanders, T. M., & Zou, N. (2019). A Power Control Algorithm Based on Chicken Game Theory in Multi-Hop Networks. Symmetry, 11(5), 718. https://doi.org/10.3390/sym11050718