Simpson’s Type Inequalities for Co-Ordinated Convex Functions on Quantum Calculus
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jackson, F.H. On a q–definite integrals. Q. J. Pure Appl. Math. 1910, 4, 193–203. [Google Scholar]
- Ernst, T. A Comprehensive Treatment of q–Calculus; Springer Basel AG: Basel, Switzerland, 2012. [Google Scholar]
- Gauchman, H. Integral inequalities in q–calculus. Comput. Math. Appl. 2004, 47, 281–300. [Google Scholar] [CrossRef]
- Kac, V.; Cheung, P. Quantum Calculus; Springer Nature: New York, NY, USA, 2001. [Google Scholar]
- Tariboon, J.; Ntouyas, S.K. Quantum integral inequalities on finite intervals. J. Inequal. Appl. 2014, 121, 13. [Google Scholar] [CrossRef]
- Tariboon, J.; Ntouyas, S.K. Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Differ. Equ. 2013, 282, 19. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Some quantum estimates for Hermite–Hadamard inequalities. Appl. Math. Comput. 2015, 251, 675–679. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Some quantum integral inequalities via preinvex functions. Appl. Math. Comput. 2015, 269, 242–251. [Google Scholar] [CrossRef]
- Sudsutad, W.; Ntouyas, S.K.; Tariboon, J. Quantum integral inequalities for convex functions. J. Math. Inequal. 2015, 9, 781–793. [Google Scholar] [CrossRef]
- Zhuang, H.; Liu, W.; Park, J. Some quantum estimates of Hermite-Hadmard inequalities for quasi-convex functions. Miskolc Math. Notes 2016, 17, 649–664. [Google Scholar]
- Alomari, M.; Darus, M.; Dragomir, S.S. New inequalities of Simpson’s type for s-convex functions with applications. RGMIA Res. Rep. Coll. 2009, 12, 1–18. [Google Scholar]
- Dragomir, S.S.; Agarwal, R.P.; Cerone, P. On Simpson’s inequality and applications. J. Inequal. Appl. 2000, 5, 533–579. [Google Scholar] [CrossRef]
- Hudzik, H.; Maligranda, L. Some remarks on s-convex functions. Aequ. Math. 1994, 48, 100–111. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Set, E.; Özdemir, M.E. On new inequalities of Simpson’s type for convex functions. Comput. Math. Appl. 2016, 60, 2191–2199. [Google Scholar] [CrossRef]
- Tunç, M.; Gov, E.; Balgecti, S. Simpson type quantum integral inequalities for convex functions. Miskolc Math. Notes 2018, 19, 649–664. [Google Scholar] [CrossRef]
- Dragomir, S.S. On the Hadamard’s inequality for functions on the co-ordinates in a rectangle from the plane. Taiwan J. Math. 2001, 5, 775–788. [Google Scholar] [CrossRef]
- Özdemir, M.E.; Akdemir, A.O.; Kavurmaci, H.; Avci, M. On the Simpson’s inequality for coordinated convex functions. arXiv 2010, arXiv:1101.0075. [Google Scholar]
- Latif, M.A.; Dragomir, S.S.; Momoniat, E. Some q–analogues of Hermite–Hadamard inequality of functions of two variables on finite rectangles in the plane. J. King Saud Univ. Sci. 2017, 29, 263–273. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalsoom, H.; Wu, J.-D.; Hussain, S.; Latif, M.A. Simpson’s Type Inequalities for Co-Ordinated Convex Functions on Quantum Calculus. Symmetry 2019, 11, 768. https://doi.org/10.3390/sym11060768
Kalsoom H, Wu J-D, Hussain S, Latif MA. Simpson’s Type Inequalities for Co-Ordinated Convex Functions on Quantum Calculus. Symmetry. 2019; 11(6):768. https://doi.org/10.3390/sym11060768
Chicago/Turabian StyleKalsoom, Humaira, Jun-De Wu, Sabir Hussain, and Muhammad Amer Latif. 2019. "Simpson’s Type Inequalities for Co-Ordinated Convex Functions on Quantum Calculus" Symmetry 11, no. 6: 768. https://doi.org/10.3390/sym11060768
APA StyleKalsoom, H., Wu, J. -D., Hussain, S., & Latif, M. A. (2019). Simpson’s Type Inequalities for Co-Ordinated Convex Functions on Quantum Calculus. Symmetry, 11(6), 768. https://doi.org/10.3390/sym11060768