Two-Dimensional Advection–Diffusion Process with Memory and Concentrated Source
Abstract
:1. Introduction
2. The Statement of the Problem
3. Analytical Solution of the Problem
4. Particular Case: A Time-Dependent Concentrated Source in the Center of Domain D
5. Numerical Solution
6. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mainardi, F. Fractals and Fractional Calculus in Continuum Mechanics; Springer: Wien, Austria, 1997. [Google Scholar]
- Laskin, N. Fractional Quantum Mechanics; World Scientific: Hackensack, NJ, USA, 2018. [Google Scholar]
- Laskin, N. Generalized classical mechanics. Eur. Phys. J. Spec. Top. 2013, 222, 1929–1938. [Google Scholar] [CrossRef]
- Hristov, J. Fractional derivative with non-singular kernels: From the Caputo-Fabrizio definition and beyond: Appraising analysis with emphasis on diffusion models. In Frontiers in Fractional Calculus; Bhalekar, S., Ed.; Bentham Publication: Kolhapur, India, 2017; Chapter 10; pp. 243–269. [Google Scholar]
- Baleanu, D.; Golmankhaneh, A.K.; Nigmatullin, R.; Golmankhaneh, A.K. Fractional Newtonian mechanics. Cent. Eur. J. Phys. 2010, 8, 120–125. [Google Scholar] [CrossRef]
- Povstenko, Y. Fractional Thermoelasticity, Solid Mechanics and Its Applications; Springer International Publishing: Cham, Switzerland, 2015; p. 219. [Google Scholar]
- Bhrawy, A.H.; Baleanu, D. A spectral Legendre-Gauss-Lobatto collocation method for a space-fractional advection diffusion equation with variable coefficients. Rep. Math. Phys. 2013, 72, 219–233. [Google Scholar] [CrossRef]
- Abdelkawy, M.A.; Zaky, M.A.; Bhrawy, A.H.; Baleanu, D. Numerical simulation of time variable fractional order mobile-immobile advection-dispersion model. Rom. Rep. Phys. 2015, 67, 773–791. [Google Scholar]
- Zhuang, P.; Liu, F.; Anh, V.; Turner, I. Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Num. Anal. 2009, 47, 1760–1781. [Google Scholar] [CrossRef]
- Fazio, R.; Jannelli, A.; Agreste, S. A finit difference method on non-uniform meshes for time-fractional advection-diffusion equations with a source term. Appl. Sci. 2018, 8, 960. [Google Scholar] [CrossRef]
- Arshad, S.; Baleanu, D.; Huang, J.; Al Qurashi, M.M.; Tang, Y.; Zhao, Y. Finite difference method for time-space fractional advection-diffusion equations with Riesz derivative. Entropy 2018, 20, 321. [Google Scholar] [CrossRef]
- Jannelli, A.; Ruggieri, M.; Speciale, M.P. Exact and numerical solutions of time-fractional advection-diffusion equation with a nonlinear source term by means of the Lie symmetries. Nonlinear Dyn. 2018, 92, 543–555. [Google Scholar] [CrossRef]
- Badr, M.; Yazdani, A.; Jafari, H. Stability of a finite volume element method for the time-fractional advection-diffusion equation. Numer. Methods Partial Differ. Eqs. 2018, 34, 1459–1471. [Google Scholar] [CrossRef]
- Pimenov, V.G. Numerical method for advection-diffusion equation with heredity. Itogi Naukii Tekniki Ser. Sovrem. Mat. Pril. Temat. Obz. 2017, 132, 86–90. [Google Scholar] [CrossRef]
- Singh, J.; Secer, A.; Swroop, R.; Kumar, D. A reliable analytical approach for a fractional model of advection-dispersion equation. Nonlinear Eng. 2018, in press. [Google Scholar] [CrossRef]
- Avci, D.; Yetim, A. Analytical solution to the advection-diffusion equation with the Atangana-Baleanu derivative over a finite domain. J. BAUN Inst. Sci. Technol. 2018, 20, 382–395. [Google Scholar] [CrossRef]
- Mirza, I.A.; Vieru, D. Fundamental solutions to advection-diffusion equation with time-fractional Caputo-Fabrizio derivative. Comput. Math. Appl. 2017, 73, 1–10. [Google Scholar] [CrossRef]
- Mirza, I.A.; Vieru, D.; Ahmed, N. Fractional advection-diffusion equation with memory and Robin-type boundary condition. Math. Model. Nat. Phenom. 2019, 14, 306. [Google Scholar] [CrossRef]
- Hristov, J. Integral balance approach to 1-D space-fractional diffusion models. In Mathematical Methods in Engineering Applications in Dynamics of Complex Systems; Tas, K., Baleanu, D., Machado, J.A.T., Eds.; Springer: Cham, Switzerland, 2019; pp. 1–21. [Google Scholar]
- Hristov, J. The heat radiation diffusion equation with memory: Constitutive approach and approximate integral-balance solutions. In Heat Conduction, Methods, Applications and Research; Hristov, J., Bennacer, R., Eds.; NOVA Science Publishers: New York, NY, USA, 2019. [Google Scholar]
- Hristov, J. Response functions in linear viscoelastic constitutive equations and related fractional operators. Math. Model. Nat. Phenom. 2018, 14, 305. [Google Scholar] [CrossRef]
- Povstenko, Y.; Klekot, J. The Dirichlet problem for the time-fractional advection-diffusion equation in a line segment. Bound. Value Probl. 2016, 2016, 89. [Google Scholar] [CrossRef]
- Povstenko, Y.; Kyrylych, T. Time-fractional diffusion with mass absorption in a half-space line domain due to boundary value of concentration varying harmonically in time. Entropy 2018, 19, 346. [Google Scholar] [CrossRef]
- Fulger, D.; Scalas, E.; Germano, G. Monte Carlo simulation of uncoupled continuous-time random walks yielding a stochastic solution of the space-time fractional diffusion equation. Phys. Rev. E 2008, 77, 021122. [Google Scholar] [CrossRef] [Green Version]
- Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Andrews, L.C.; Shivamoggi, B.K. Integral Transforms for Engineers; SPIE Press: Washington, DC, USA, 1999. [Google Scholar]
- Bracewell, R. The Shifting Property. In The Fourier Transform and Its Applications, 3rd ed.; McGraw-Hill Science/Engineering/Math.: New York, NY, USA, 1999; pp. 74–77. [Google Scholar]
- Atangana, A.; Alqahtani, R.T. Numerical approximation of the space-time Caputo-Fabrizio fractional derivative and application to groundwater pollution equation. Adv. Diff. Eqs. 2016, 2016, 156. [Google Scholar] [CrossRef]
- Rangaig, N.A. Finite difference approximation for Caputo-Fabrizio time fractional derivative on non-uniform mesh and some applications. Phys. J. 2018, 3, 255–263. [Google Scholar]
x | ||||||
Numerical Solution | Equation (77) | Numerical Solution | Equation (77) | Numerical Solution | Equation (77) | |
0.005 | 0.080 | 0.081 | 0.129 | 0.130 | 0.158 | 0.159 |
0.010 | 0.129 | 0.130 | 0.214 | 0.216 | 0.267 | 0.270 |
0.015 | 0.158 | 0.159 | 0.267 | 0.270 | 0.338 | 0.340 |
0.020 | 0.174 | 0.175 | 0.297 | 0.299 | 0.379 | 0.381 |
0.025 | 0.179 | 0.181 | 0.307 | 0.309 | 0.391 | 0.394 |
0.030 | 0.174 | 0.175 | 0.297 | 0.299 | 0.378 | 0.381 |
0.035 | 0.158 | 0.159 | 0.268 | 0.269 | 0.338 | 0.340 |
0.040 | 0.125 | 0.120 | 0.213 | 0.215 | 0.267 | 0.270 |
0.045 | 0.080 | 0.081 | 0.129 | 0.130 | 0.158 | 0.159 |
x | ||||||
Numerical Solution | Equation (77) | Numerical Solution | Equation (77) | Numerical Solution | Equation (77) | |
0.005 | 0.174 | 0.175 | 0.179 | 0.181 | 0.174 | 0.175 |
0.010 | 0.297 | 0.299 | 0.306 | 0.309 | 0.297 | 0.299 |
0.015 | 0.378 | 0.380 | 0.391 | 0.394 | 0.379 | 0.381 |
0.020 | 0.424 | 0.427 | 0.439 | 0.441 | 0.424 | 0.427 |
0.025 | 0.439 | 0.441 | 0.455 | 0.457 | 0.438 | 0.442 |
0.030 | 0.423 | 0.426 | 0.438 | 0.441 | 0.423 | 0.426 |
0.035 | 0.377 | 0.380 | 0.391 | 0.393 | 0.377 | 0.380 |
0.040 | 0.296 | 0.298 | 0.306 | 0.308 | 0.296 | 0.299 |
0.045 | 0.174 | 0.175 | 0.179 | 0.181 | 0.174 | 0.175 |
x | ||||||
Numerical Solution | Equation (77) | Numerical Solution | Equation (77) | Numerical Solution | Equation (77) | |
0.005 | 0.158 | 0.159 | 0.128 | 0.130 | 0.080 | 0.081 |
0.010 | 0.267 | 0.269 | 0.213 | 0.215 | 0.128 | 0.130 |
0.015 | 0.338 | 0.340 | 0.267 | 0.269 | 0.158 | 0.159 |
0.020 | 0.377 | 0.380 | 0.296 | 0.298 | 0.174 | 0.175 |
0.025 | 0.390 | 0.393 | 0.306 | 0.308 | 0.179 | 0.180 |
0.030 | 0.377 | 0.380 | 0.296 | 0.299 | 0.174 | 0.175 |
0.035 | 0.337 | 0.340 | 0.266 | 0.269 | 0.157 | 0.159 |
0.040 | 0.266 | 0.269 | 0.212 | 0.214 | 0.128 | 0.129 |
0.045 | 0.157 | 0.159 | 0.128 | 0.129 | 0.079 | 0.081 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, N.; Shah, N.A.; Vieru, D. Two-Dimensional Advection–Diffusion Process with Memory and Concentrated Source. Symmetry 2019, 11, 879. https://doi.org/10.3390/sym11070879
Ahmed N, Shah NA, Vieru D. Two-Dimensional Advection–Diffusion Process with Memory and Concentrated Source. Symmetry. 2019; 11(7):879. https://doi.org/10.3390/sym11070879
Chicago/Turabian StyleAhmed, Najma, Nehad Ali Shah, and Dumitru Vieru. 2019. "Two-Dimensional Advection–Diffusion Process with Memory and Concentrated Source" Symmetry 11, no. 7: 879. https://doi.org/10.3390/sym11070879
APA StyleAhmed, N., Shah, N. A., & Vieru, D. (2019). Two-Dimensional Advection–Diffusion Process with Memory and Concentrated Source. Symmetry, 11(7), 879. https://doi.org/10.3390/sym11070879