Non-Dual Multi-Granulation Neutrosophic Rough Set with Applications
Abstract
:1. Introduction
2. Preliminary
- (1)
- A ⊆ B iff ∀ x ∈ U, TA(x) ≤ TB(x), IA(x) ≥ IB(x), FA(x) ≥ FB(x);
- (2)
- A ∪ B = {(x, TA(x) ∨ TB(x), IA(x) ∧ IB(x), FA(x) ∧ FB(x)) | x ∈ U};
- (3)
- A ∩ B = {(x, TA(x) ∧ TB(x), IA(x) ∨ IB(x), FA(x) ∨ FB(x)) | x ∈ U};
- (4)
- Ac = {(x, FA(x), 1‒IA(x), TA(x)) | x ∈ U}.
- (1)
- ,.
- (2)
- ,.
- (3)
- ,.
- (4)
- ,.
- (5)
- .
- (6)
- .
- (7)
- ,.
- (8)
- ,.
- (1)
- If, then.
- (2)
- If, then.
- (3)
- If,,, then; if, then.
3. Non-Dual Multi-Granulation Neutrosophic Rough Set
- (1)
- ,;
- (2)
- ,;
- (3)
- ,;
- (4)
- ,;
- (5)
- ,;
- (6)
- ,.
4. The Relationships between Multi-Granulation Neutrosophic Rough Set Models
- (1)
- ;
- (2)
- .
5. The Application of Non-Dual Multi-Granulation Neutrosophic Rough Set on Two Universes in MGDM
- (1)
- ,;
- (2)
- ,;
- (3)
- ,;
- (4)
- ,;
- (5)
- ,;
- (6)
- ,.
Algorithm 1 The lower approximation of a union-type multi-granulation neutrosophic rough set |
Define the method to acquire a complement for a matrix A: each neutrosophic number in matrix A do complement the operator according to the following Formula: . Return matrix C. Define the method for two matrixes to do union operator: the union of B and C is the neutrosophic number of each row in C to do union operator with the corresponding neutrosophic number in B according to the Formula (22) Return matrix D. Define the method for one matrix to do intersection operator: the neutrosophic numbers of each row in D do intersection operator according to the Formula (23) Return matrix E. Define the method for one matrix to do union operator: the neutrosophic numbers of each row in E do union operator according to the Formula (22). Return matrix F. For the number of iterations is h, Transfer the method of acquire complement, assign X. Get Y. Transfer the method for two matrixes to do union operator, assign Y, Z. Get M. Transfer the method to do intersection operator, assign M. Get N. End for. Combine h matrixes N. Get P. Transfer the method for one matrix to do union operator, assign P. Get Q. |
Algorithm 2 The upper approximation of a union-type multi-granulation neutrosophic rough set |
Define the method for two matrixes to do intersection operator: the intersection of B and C is the neutrosophic number of each row in C to do intersection operator with the corresponding neutrosophic number in B according to the Formula (23). Return matrix D. Define the method for one matrix to do union operator: the neutrosophic numbers of each row in D do union operator according to the Formula (22). Return matrix E. For the number of iterations is h, Transfer the method for two matrixes to do intersection operator, assign Y, Z. Get M. Transfer the method for one matrix to do union operator, assign M. Get N. End for. Combine h matrixes N. Get P. Transfer the method for one matrix to do intersection operator, assign P. Get Q. |
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Atanassov, K.T. Type-1 Fuzzy Sets and Intuitionistic Fuzzy Sets. Algorithms 2017, 10, 106. [Google Scholar] [CrossRef]
- Bisht, K.; Joshi, D.K.; Kumar, S. Dual Hesitant Fuzzy Set-Based Intuitionistic Fuzzy Time Series Forecasting. In Ambient Communication and Computer Systems; Springer: Singapore, 2018; pp. 317–329. [Google Scholar]
- Kumar, K.; Garg, H. TOPSIS method based on the connection number of set pair analysis under interval-valued intuitionistic fuzzy set environment. Comput. Appl. Math. 2018, 37, 1319–1329. [Google Scholar] [CrossRef]
- Maji, P. Advances in Rough Set Based Hybrid Approaches for Medical Image Analysis. In International Joint Conference on Rough Sets; Springer: Cham, Germany, 2017; pp. 25–33. [Google Scholar]
- Smarandache, F. Neutrosophic set—A generialization of theintuitionistics fuzzy sets. Int. J. Pure Appl. Math. 2005, 24, 287–297. [Google Scholar]
- Wang, H.B.; Smarandache, F.; Zhang, Y.; Sunderraman, R. Single valued neutrosophic sets. Multispace Multistruct. 2010, 4, 410–413. [Google Scholar]
- Peng, J.; Wang, J.; Wang, J.; Zhang, H.; Chen, H. Simplified neutrosophic sets and their applications in multi-criteria group decision-making problems. Int. J. Syst. Sci. 2016, 47, 2342–2358. [Google Scholar] [CrossRef]
- Peng, H.; Zhang, H.; Wang, J. Probability multi-valued neutrosophic sets and its application in multi-criteria group decision-making problems. Neural Compt. Appl. 2018, 30, 563–583. [Google Scholar] [CrossRef]
- Deli, I.; Ali, M.; Smarandache, F. Bipolarneutrosophic sets and their application based on multi-criteria decision making problems. In Proceedings of the 2015 International Conference on Advanced Mechatronic Systems, Beijing, China, 22–24 August 2015; pp. 249–254. [Google Scholar]
- Zhang, X.; Bo, C.X.; Smarandache, F.; Dai, J.H. New inclusion relation of neutrosophic sets withapplications and related lattice structure. Int. J. Mach. Learn. Cybern. 2018, 9, 1753–1763. [Google Scholar] [CrossRef]
- Dubois, D.; Prade, H. Rough fuzzy sets and fuzzy rough sets. Int. J. Gen. Syst. 1990, 17, 191–209. [Google Scholar] [CrossRef]
- Cornelis, C.; De Cock, M.; Kerre, E.E. Intuitionistic fuzzy rough sets: At the crossroads of imperfect knowledge. Expert Syst. 2003, 20, 260–270. [Google Scholar] [CrossRef]
- Zhan, J.; Ali, M.I.; Mehmood, N. On a novel uncertain soft set model: Z-soft fuzzy rough set model and corresponding decision making methods. Appl. Soft Comput. 2017, 56, 446–457. [Google Scholar] [CrossRef]
- Yang, H.L.; Zhang, C.L.; Guo, Z.L.; Liu, Y.L.; Liao, X. A hybrid model of single valued neutrosophic sets and rough sets: Single valued neutrosophic rough set model. Soft Comput. 2017, 21, 6253–6267. [Google Scholar] [CrossRef]
- Garg, H. An improved score function for ranking neutrosophic sets and its application to decision-making process. Int. J. Uncertain. Quantif. 2016, 6, 377–385. [Google Scholar]
- Li, Y.Y.; Zhang, H.; Wang, J.Q. Linguistic neutrosophic sets and their application in multicriteria decision-making problems. Int. J. Uncertain. Quantif. 2017, 7, 135–154. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, M. The role of single valued neutrosophic sets and rough sets in smart city: Imperfect and incomplete information systems. Measurement 2018, 124, 47–55. [Google Scholar] [CrossRef]
- Yang, H.L.; Bao, Y.L.; Guo, Z.L. Generalized Interval Neutrosophic Rough Sets and its Application in Multi-Attribute Decision Making. Filomate 2018, 32, 11–33. [Google Scholar] [CrossRef]
- Zhang, C.; Zhai, Y.; Li, D.; Mu, Y. Steam turbine fault diagnosis based on single-valued neutrosophicmultigranulation rough sets over two universes. J. Intell. Fuzzy Syst. 2016, 31, 2829–2837. [Google Scholar] [CrossRef]
- Qian, Y.H.; Liang, J.Y.; Yao, Y.Y.; Dang, C.Y. MGRS: A multi-granulation rough set. Inf. Sci. 2010, 180, 949–970. [Google Scholar] [CrossRef]
- Yao, Y.; She, Y. Rough set models in multigranulation spaces. Inf. Sci. 2016, 327, 40–56. [Google Scholar] [CrossRef]
- Kumar, S.S.; Inbarani, H.H. Optimistic multi-granulation rough set based classification for medical diagnosis. Procedia. Comput. Sci. 2015, 47, 374–382. [Google Scholar] [CrossRef]
- Majumdar, P.; Samanta, S.K. On similarity and entropy of neutrosophic sets. J. Int. Fuzzy Syst. 2014, 26, 1245–1252. [Google Scholar] [Green Version]
- Kang, Y.; Wu, S.; Li, Y.; Liu, J.; Chen, B. A variable precision grey-based multi-granulation rough set model and attribute reduction. Knowl. Based Syst. 2018, 148, 131–145. [Google Scholar] [CrossRef]
- Sun, B.Z.; Ma, W.M.; Qian, Y.H. Multigranulation fuzzy rough set over two universes and its application to decision making. Knowl. Based Syst. 2017, 123, 61–74. [Google Scholar] [CrossRef] [Green Version]
- Pan, W.; She, K.; Wei, P. Multi-granulation fuzzy preference relation rough set for ordinal decision system. Fuzzy Sets Syst. 2017, 312, 87–108. [Google Scholar] [CrossRef]
- Huang, B.; Guo, C.; Zhuang, Y.; Li, H.; Zhou, X. Intuitionistic fuzzy multi-granulation rough sets. Inf. Sci. 2014, 277, 299–320. [Google Scholar] [CrossRef]
- Bo, C.X.; Zhang, X.; Shao, S.T.; Smarandache, F. New multi-granulation neutrosophic rough set with applications. Symmetry 2018, 10, 578. [Google Scholar] [CrossRef]
- Xu, W.; Li, W.; Zhang, X. Generalized multigranulation rough sets and optimal granularity selection. Granul. Comput. 2017, 2, 271–288. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Wang, Q.; Lu, X.; Li, H. Hybrid multi-granulation rough sets of variable precision based on tolerance. J. Int. Fuzzy Syst. 2016, 31, 717–725. [Google Scholar] [CrossRef]
- Zhang, X.; Miao, D.; Liu, C.; Le, M. Constructive methods of rough approximation operators and multi-granulation rough sets. Knowl. Based Syst. 2016, 91, 114–125. [Google Scholar] [CrossRef]
- Yang, H.L.; Guo, Z.L.; Liao, X. On single valued neutrosophic relations. J. Intell. Fuzzy Syst. 2016, 30, 1045–1056. [Google Scholar] [CrossRef] [Green Version]
- Zarghami, M. Soft computing of the Borda count by fuzzy linguistic quantifiers. Appl. Soft Comput. 2011, 11, 1067–1073. [Google Scholar] [CrossRef]
- Chai, J.; Liu, J.N.K.; Xu, Z. A rule-based group decision model for warehouse evaluation under interval-valued Intuitionistic fuzzy environments. Expert Syst. Appl. 2013, 40, 1959–1970. [Google Scholar] [CrossRef]
- Zhang, X.H.; Bo, C.X.; Smarandache, F.; Park, C. New operations of totally dependent-neutrosophic sets and totally dependent-neutrosophic soft sets. Symmetry 2018, 10, 187. [Google Scholar] [CrossRef]
- Zhang, X.H.; Mao, X.Y.; Wu, Y.T.; Zhai, X.H. Neutrosophic filters in pseudo-BCI algebras. Int. J. Uncertain. Quantif. 2018, 8, 511–526. [Google Scholar] [CrossRef]
- Ma, Y.C.; Zhang, X.H.; Yang, X.F.; Zhou, X. Generalized neutrosophic extended triplet group. Symmetry 2019, 11, 327. [Google Scholar] [CrossRef]
- Wu, X.Y.; Zhang, X.H. The decomposition theorems of AG-neutrosophic extended triplet loops and strong AG-(l, l)-loops. Mathematics 2019, 7, 268. [Google Scholar] [CrossRef]
- Zhang, X.H.; Borzooei, R.A.; Jun, Y.B. Q-filters of quantum B-algebras and basic implication algebras. Symmetry 2018, 10, 573. [Google Scholar] [CrossRef]
- Abu Qamar, M.; Hassan, N. An Approach toward a Q-Neutrosophic Soft Set and Its Application in Decision Making. Symmetry 2019, 11, 139. [Google Scholar] [CrossRef]
- Badamchizadeh, M.A.; Nikdel, A.; Kouzehgar, M. Comparison of genetic algorithm and particle swarm optimization for data fusion method based on Kalman filter. Int. J. Artifi. Intell. 2010, 5, 67–78. [Google Scholar]
- Pozna, C.; Precup, R.E.; Tar, J.K.; Skrjanc, L.; Preitle, S. New results in modelling derived from Bayesian filtering. Knowl. Based Syst. 2010, 23, 182–194. [Google Scholar] [CrossRef]
- Jankowski, J.; Kazienko, P.; Wątróbski, J.; Lewandowska, A.; Zimba, P.; Zioło, M. Fuzzy multi-objective modeling of effectiveness and user experience in online advertising. Expert Syst. Appl. 2016, 65, 315–331. [Google Scholar] [CrossRef]
- Zhang, X.H.; Wang, X.J.; Smarandache, F.; Jaiyeola, T.G.; Lian, T.Y. Singular neutrosophic extended triplet groups and generalized groups. Cognitive Systems Research 2019, 57, 32–40. [Google Scholar] [CrossRef]
R1 | x1 | x2 | x3 |
---|---|---|---|
y1 | (0.75, 0.14, 0.09) | (0.86, 0.04, 0.01) | (0.66, 0.30, 0.29) |
y2 | (0.44, 0.33, 0.29) | (0.51, 0.09, 0.04) | (0.54, 0.29, 0.27) |
y3 | (0.54, 0.09, 0.08) | (0.66, 0.14, 0.06) | (0.54, 0.36, 0.34) |
y4 | (0.56, 0.19, 0.14) | (0.50, 0.20, 0.12) | (0.44, 0.26, 0.23) |
y5 | (0.33, 0.31, 0.30) | (0.43, 0.16, 0.02) | (0.21, 0.61, 0.60) |
R2 | x1 | x2 | x3 |
---|---|---|---|
y1 | (0.71, 0.10, 0.08) | (0.57, 0.01, 0.00) | (0.56, 0.09, 0.09) |
y2 | (0.39, 0.54, 0.43) | (0.59, 0.11, 0.01) | (0.44, 0.19, 0.18) |
y3 | (0.52, 0.17, 0.07) | (0.63, 0.04, 0.02) | (0.37, 0.54, 0.51) |
y4 | (0.31, 0.09, 0.08) | (0.52, 0.31, 0.09) | (0.41, 0.29, 0.27) |
y5 | (0.10, 0.61, 0.59) | (0.33, 0.33, 0.13) | (0.19, 0.09, 0.07) |
R3 | x1 | x2 | x3 |
---|---|---|---|
y1 | (0.89, 0.06, 0.05) | (0.86, 0.01, 0.01) | (0.77, 0.21, 0.20) |
y2 | (0.61, 0.30, 0.27) | (0.76, 0.09, 0.01) | (0.56, 0.27, 0.25) |
y3 | (0.64, 0.20, 0.10) | (0.63, 0.01, 0.01) | (0.59, 0.33, 0.29) |
y4 | (0.68, 0.16, 0.04) | (0.59, 0.03, 0.02) | (0.57, 0.36, 0.31) |
y5 | (0.39, 0.23, 0.10) | (0.34, 0.30, 0.19) | (0.29, 0.59, 0.49) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bo, C.; Zhang, X.; Shao, S. Non-Dual Multi-Granulation Neutrosophic Rough Set with Applications. Symmetry 2019, 11, 910. https://doi.org/10.3390/sym11070910
Bo C, Zhang X, Shao S. Non-Dual Multi-Granulation Neutrosophic Rough Set with Applications. Symmetry. 2019; 11(7):910. https://doi.org/10.3390/sym11070910
Chicago/Turabian StyleBo, Chunxin, Xiaohong Zhang, and Songtao Shao. 2019. "Non-Dual Multi-Granulation Neutrosophic Rough Set with Applications" Symmetry 11, no. 7: 910. https://doi.org/10.3390/sym11070910
APA StyleBo, C., Zhang, X., & Shao, S. (2019). Non-Dual Multi-Granulation Neutrosophic Rough Set with Applications. Symmetry, 11(7), 910. https://doi.org/10.3390/sym11070910