Symmetry Breaking in Self-Assembled Nanoassemblies
Abstract
:1. Introduction
2. Symmetry Breaking in Self-Assembly Systems
3. Selection and Control of Supramolecular Chirality during Symmetry Breaking: Towards the Homochirality in Nanoassemblies
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chelucci, G.; Thummel, R.P. Chiral 2,2′-bipyridines, 1,10-phenanthrolines, and 2,2′: 6′,2′′-terpyridines: Syntheses and applications in asymmetric homogeneous catalysis. Chem. Rev. 2002, 102, 3129–3170. [Google Scholar] [CrossRef] [PubMed]
- Chin, J.; Lee, S.S.; Lee, K.J.; Park, S.; Kim, D.H. A metal complex that binds alpha-amino acids with high and predictable stereospecificity. Nature 1999, 401, 254–257. [Google Scholar] [CrossRef] [PubMed]
- Engelkamp, H.; Middelbeek, S.; Nolte, R.J.M. Self-assembly of disk-shaped molecules to coiled-coil aggregates with tunable helicity. Science 1999, 284, 785–788. [Google Scholar] [CrossRef] [PubMed]
- Lehn, J.M. Supramolecular chemistry. Science 1993, 260, 1762–1763. [Google Scholar] [CrossRef] [PubMed]
- Prins, L.J.; Huskens, J.; de Jong, F.; Timmerman, P.; Reinhoudt, D.N. Complete asymmetric induction of supramolecular chirality in a hydrogen-bonded assembly. Nature 1999, 398, 498–502. [Google Scholar] [CrossRef] [Green Version]
- Bada, J.L. Biomolecules - origins of homochirality. Nature 1995, 374, 594–595. [Google Scholar] [CrossRef]
- Mason, S.F. Origins of biomolecular handedness. Nature 1984, 311, 19–23. [Google Scholar] [CrossRef]
- Collins, A.N.; Sheldrake, G.; Crosby, J. Chirality in Industry ii: Developments in the Commercial Manufacture and Applications of Optically Active Compounds; John Wiley & Sons: Hoboken, NJ, USA, 1997; Volume 2. [Google Scholar]
- Eliel, E.L.; Wilen, S.H. Stereochemistry of Organic Compounds; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Hegstrom, R.A.; Kondepudi, D.K. The handedness of the universe. Sci. Am. 1990, 262, 108–115. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, L.; Wang, T. Supramolecular chirality in self-assembled systems. Chem. Rev. 2015, 115, 7304–7397. [Google Scholar] [CrossRef]
- Duan, P.; Cao, H.; Zhang, L.; Liu, M. Gelation induced supramolecular chirality: Chirality transfer, amplification and application. Soft Matter 2014, 10, 5428–5448. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Kimura, T.; Matsuda, H.; Aida, T. Macroscopic spinning chirality memorized in spin-coated films of spatially designed dendritic zinc porphyrin j-aggregates. Angew. Chem. Int. Ed. 2004, 43, 6350–6355. [Google Scholar] [CrossRef] [PubMed]
- Ribo, J.M.; Crusats, J.; Sagues, F.; Claret, J.; Rubires, R. Chiral sign induction by vortices during the formation of mesophases in stirred solutions. Science 2001, 292, 2063–2066. [Google Scholar] [CrossRef] [PubMed]
- Azeroual, S.; Surprenant, J.; Lazzara, T.D.; Kocun, M.; Tao, Y.; Cuccia, L.A.; Lehn, J.-M. Mirror symmetry breaking and chiral amplification in foldamer-based supramolecular helical aggregates. Chem. Commun. 2012, 48, 2292–2294. [Google Scholar] [CrossRef] [PubMed]
- DeRossi, U.; Dahne, S.; Meskers, S.C.J.; Dekkers, H. Spontaneous formation of chirality in j-aggregates showing davydov splitting. Angew. Chem. Int. Ed. 1996, 35, 760–763. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, S.; Lan, J.; Yang, S.; You, J. Helical nonracemic tubular coordination polymer gelators from simple achiral molecules. Chem. Commun. 2008, 6170–6172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saito, Y.; Hyuga, H. Colloquium: Homochirality: Symmetry breaking in systems driven far from equilibrium. Rev. Mod. Phys. 2013, 85, 603–621. [Google Scholar] [CrossRef]
- Bonner, W.A. The origin and amplification of biomolecular chirality. Orig. Life Evol. Biosph. 1991, 21, 59–111. [Google Scholar] [CrossRef]
- Luisi, P.L. The Emergence of Life: From Chemical Origins to Synthetic Biology; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Barron, L.D. Symmetry and molecular chirality. Chem. Soc. Rev. 1986, 15, 189–223. [Google Scholar] [CrossRef]
- Cintas, P.; Viedma, C. On the physical basis of asymmetry and homochirality. Chirality 2012, 24, 894–908. [Google Scholar] [CrossRef]
- Karunakaran, S.C.; Cafferty, B.J.; Weigert-Munoz, A.; Schuster, G.B.; Hud, N.V. Spontaneous symmetry breaking in the formation of supramolecular polymers: Implications for the origin of biological homochirality. Angew. Chem. Int. Ed. 2019, 58, 1453–1457. [Google Scholar] [CrossRef]
- Alexander, A.J. Crystallization of sodium chlorate with d-glucose co-solute is not enantioselective. Cryst. Growth Des. 2008, 8, 2630–2632. [Google Scholar] [CrossRef]
- Kondepudi, D.K.; Kaufman, R.J.; Singh, N. Chiral symmetry-breaking in sodium-chlorate crystallization. Science 1990, 250, 975–976. [Google Scholar] [CrossRef] [PubMed]
- Kipping, F.S.; Pope, W.J. Lxiii.—Enantiomorphism. J. Am. Chem. Soc. 1898, 73, 606–617. [Google Scholar] [CrossRef]
- Yuan, J.; Liu, M. Chiral molecular assemblies from a novel achiral amphiphilic 2-(heptadecyl) naphtha[2,3]imidazole through interfacial coordination. J. Am. Chem. Soc. 2003, 125, 5051–5056. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Li, C.; Jiang, S.; Wang, X.; Zhang, B.; Liu, M. Self-assembled spiral nanoarchitecture and supramolecular chirality in langmuir−blodgett films of an achiral amphiphilic barbituric acid. J. Am. Chem. Soc. 2004, 126, 1322–1323. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Zhang, L.; Liu, M. A supramolecular chiroptical switch exclusively from an achiral amphiphile. Adv. Mater. 2006, 18, 177–180. [Google Scholar] [CrossRef]
- Elemans, J.A.A.W.; De Cat, I.; Xu, H.; De Feyter, S. Two-dimensional chirality at liquid-solid interfaces. Chem. Soc. Rev. 2009, 38, 722–736. [Google Scholar] [CrossRef] [PubMed]
- Ernst, K. Amplification of chirality in two-dimensional molecular lattices. Curr. Opin. Colloid Interface Sci. 2008, 13, 54–59. [Google Scholar] [CrossRef]
- Foster, J.S.; Frommer, J.E. Imaging of liquid-crystals using a tunnelling microscope. Nature 1988, 333, 542–545. [Google Scholar] [CrossRef]
- Hough, L.E.; Spannuth, M.; Nakata, M.; Coleman, D.A.; Jones, C.D.; Dantlgraber, G.; Tschierske, C.; Watanabe, J.; Koerblova, E.; Walba, D.M.; et al. Chiral isotropic liquids from achiral molecules. Science 2009, 325, 452–456. [Google Scholar] [CrossRef]
- Dressel, C.; Liu, F.; Prehm, M.; Zeng, X.; Ungar, G.; Tschierske, C. Dynamic mirror-symmetry breaking in bicontinuous cubic phases. Angew. Chem. Int. Ed. 2014, 53, 13115–13120. [Google Scholar] [CrossRef] [PubMed]
- Tschierske, C.; Ungar, G. Mirror symmetry breaking by chirality synchronisation in liquids and liquid crystals of achiral molecules. Chemphyschem 2016, 17, 9–26. [Google Scholar] [CrossRef] [PubMed]
- Keith, C.; Reddy, R.A.; Hauser, A.; Baumeister, U.; Tschierske, C. Silicon-containing polyphilic bent-core molecules: The importance of nanosegregation for the development of chirality and polar order in liquid crystalline phases formed by achiral molecules. J. Am. Chem. Soc. 2006, 128, 3051–3066. [Google Scholar] [CrossRef] [PubMed]
- Young, W.R.; Aviram, A.; Cox, R.J. Stilbene derivatives—New class of room-temperature nematic liquids. J. Am. Chem. Soc. 1972, 94, 3976–3981. [Google Scholar] [CrossRef]
- Qiu, Y.; Chen, P.; Liu, M. Evolution of various porphyrin nanostructures via an oil/aqueous medium: Controlled self-assembly, further organization, and supramolecular chirality. J. Am. Chem. Soc. 2010, 132, 9644–9652. [Google Scholar] [CrossRef] [PubMed]
- Okano, K.; Taguchi, M.; Fujiki, M.; Yamashita, T. Circularly polarized luminescence of rhodamine b in a supramolecular chiral medium formed by a vortex flow. Angew. Chem. Int. Ed. 2011, 50, 12474–12477. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wong, K.M.-C.; Wong, H.-L.; Yam, V.W.-W. Helical self-assembly and photopolymerization properties of achiral amphiphilic platinum(ii) diacetylene complexes of tridentate 2,6bis(1-alkylpyrazol-3-yl)pyridines. ACS Appl. Mater. Inter. 2016, 8, 17445–17453. [Google Scholar] [CrossRef]
- Song, B.; Liu, B.; Jin, Y.; He, X.; Tang, D.; Wu, G.; Yin, S. Controlled self-assembly of helical nano-ribbons formed by achiral amphiphiles. Nanoscale 2015, 7, 930–935. [Google Scholar] [CrossRef]
- Stals, P.J.M.; Korevaar, P.A.; Gillissen, M.A.J.; de Greef, T.F.A.; Fitie, C.F.C.; Sijbesma, R.P.; Palmans, A.R.A.; Meijer, E.W. Symmetry breaking in the self-assembly of partially fluorinated benzene-1,3,5-tricarboxamides. Angew. Chem. Int. Ed. 2012, 51, 11297–11301. [Google Scholar] [CrossRef]
- Shen, Z.; Wang, T.; Liu, M. Macroscopic chirality of supramolecular gels formed from achiral tris(ethyl cinnamate) benzene-1,3,5-tricarboxamides. Angew. Chem. Int. Ed. 2014, 53, 13424–13428. [Google Scholar] [CrossRef]
- Shen, Z.; Jiang, Y.; Wang, T.; Liu, M. Symmetry breaking in the supramolecular gels of an achiral gelator exclusively driven by pi-pi stacking. J. Am. Chem. Soc. 2015, 137, 16109–16115. [Google Scholar] [CrossRef] [PubMed]
- Maity, A.; Gangopadhyay, M.; Basu, A.; Aute, S.; Babu, S.S.; Das, A. Counter anion driven homochiral assembly of a cationic achiral c3-symmetric gelator through ion-pair assisted hydrogen bond. J. Am. Chem. Soc. 2016, 138, 11113–11116. [Google Scholar] [CrossRef] [PubMed]
- Sang, Y.; Duan, P.; Liu, M. Nanotrumpets and circularly polarized luminescent nanotwists hierarchically self-assembled from an achiral c3-symmetric ester. Chem. Commun. 2018, 54, 4025–4028. [Google Scholar] [CrossRef] [PubMed]
- Kimura, M.; Hatanaka, T.; Nomoto, H.; Takizawa, J.; Fukawa, T.; Tatewaki, Y.; Shirai, H. Self-assembled helical nanofibers made of achiral molecular disks having molecular adapter. Chem. Mater. 2010, 22, 5732–5738. [Google Scholar] [CrossRef]
- Pasteur, M.L. Recherches sur les relations qui peuvent exister entre la forme cristalline: La composition chimique et les sens de la polarisation rotatoire. Ann. Chim. Phys. 1848, 442–459. [Google Scholar]
- Pagni, R.M.; Compton, R.N. Asymmetric synthesis of optically active sodium chlorate and bromate crystals. Cryst. Growth Des. 2002, 2, 249–253. [Google Scholar] [CrossRef]
- Kipping, F.S.; Pope, W.J. Stereochemistry and vitalism. Nature 1898, 59, 53. [Google Scholar] [CrossRef]
- Koby, L.; Ningappa, J.B.; Dakessian, M.; Cuccia, L.A. Chiral crystallization of ethylenediamine sulfate. J. Chem. Educ. 2005, 82, 1043–1045. [Google Scholar]
- Saito, Y.; Hyuga, H. Chirality selection in crystallization. J. Phys. Soc. Jpn. 2005, 74, 535–537. [Google Scholar] [CrossRef]
- Ziach, K.; Jurczak, J. Mirror symmetry breaking upon spontaneous crystallization from a dynamic combinatorial library of macrocyclic imines. Chem. Commun. 2015, 51, 4306–4309. [Google Scholar] [CrossRef]
- Chen, S.-C.; Zhang, J.; Yu, R.-M.; Wu, X.-Y.; Xie, Y.-M.; Wang, F.; Lu, C.-Z. Spontaneous asymmetrical crystallization of a three-dimensional diamondoid framework material from achiral precursors. Chem. Commun. 2010, 46, 1449–1451. [Google Scholar] [CrossRef] [PubMed]
- Shu, C.-Y.; Huang, F.-P.; Yu, Q.; Yao, P.-F.; Bian, H.-D.; Lan, R.-Q.; Wei, B.-L. Ph-dependent co(ii) assemblies from achiral 2-benzothiazolylthioacetic acid: Crystal structures, symmetry breaking, and magnetic properties. J. Coord. Chem. 2015, 68, 2107–2120. [Google Scholar] [CrossRef]
- Mineo, P.; Villari, V.; Scamporrino, E.; Micali, N. Supramolecular chirality induced by a weak thermal force. Soft Matter 2014, 10, 44–47. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhou, D.; Li, H.; Li, R.; Zhong, Y.; Sun, X.; Sun, X. Hydrogen-bonded supercoil self-assembly from achiral molecular components with light-driven supramolecular chirality. J. Mater. Chem. C 2014, 2, 6402–6409. [Google Scholar] [CrossRef]
- Hu, Q.; Wang, Y.; Jia, J.; Wang, C.; Feng, L.; Dong, R.; Sun, X.; Hao, J. Photoresponsive chiral nanotubes of achiral amphiphilic azobenzene. Soft Matter 2012, 8, 11492–11498. [Google Scholar] [CrossRef]
- Romeo, A.; Castriciano, M.A.; Occhiuto, I.; Zagami, R.; Pasternack, R.F.; Scolaro, L.M. Kinetic control of chirality in porphyrin j-aggregates. J. Am. Chem. Soc. 2014, 136, 40–43. [Google Scholar] [CrossRef] [PubMed]
- Katsonis, N.; Lacaze, E.; Feringa, B.L. Molecular chirality at fluid/solid interfaces: Expression of asymmetry in self-organised monolayers. J. Mater. Chem. C 2008, 18, 2065–2073. [Google Scholar] [CrossRef]
- Perez-Garcia, L.; Amabilino, D.B. Spontaneous resolution, whence and whither: From enantiomorphic solids to chiral liquid crystals, monolayers and macro-and supra-molecular polymers and assemblies. Chem. Soc. Rev. 2007, 36, 941–967. [Google Scholar] [CrossRef]
- Parschau, M.; Ernst, K.-H. Disappearing enantiomorphs: Single handedness in racemate crystals. Angew. Chem. Int. Ed. 2015, 54, 14422–14426. [Google Scholar] [CrossRef]
- Sakaguchi, H.; Song, S.; Kojima, T.; Nakae, T. Homochiral polymerization-driven selective growth of graphene nanoribbons. Nat. Chem. 2017, 9, 57–63. [Google Scholar] [CrossRef]
- George, L.; Gaines, J. Insoluble Monolayers at Liquid-Gas Interfaces; Interscience Publishers: New York, NY, USA, 1966. [Google Scholar]
- Ulman, A. An Introduction to Ultrathin Organic Films: From Langmuir-Blodgett to Self-Assembly; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Tahara, K.; Yamaga, H.; Ghijsens, E.; Inukai, K.; Adisoejoso, J.; Blunt, M.O.; De Feyter, S.; Tobe, Y. Control and induction of surface-confined homochiral porous molecular networks. Nat. Chem. 2011, 3, 714–719. [Google Scholar] [CrossRef]
- Sang, Y.; Yang, D.; Duan, P.; Liu, M. Towards homochiral supramolecular entities from achiral molecules by vortex mixing-accompanied self-assembly. Chem. Sci. 2019, 10, 2718–2724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barth, J.V. Molecular architectonic on metal surfaces. Annu. Rev. Phys. Chem. 2007, 58, 375–407. [Google Scholar] [CrossRef] [PubMed]
- Bartels, L. Tailoring molecular layers at metal surfaces. Nat. Chem. 2010, 2, 87–95. [Google Scholar] [CrossRef]
- Link, D.R.; Natale, G.; Shao, R.; Maclennan, J.E.; Clark, N.A.; Korblova, E.; Walba, D.M. Spontaneous formation of macroscopic chiral domains in a fluid smectic phase of achiral molecules. Science 1997, 278, 1924–1927. [Google Scholar] [CrossRef] [PubMed]
- Tschierske, C. Development of structural complexity by liquid-crystal self-assembly. Angew. Chem. Int. Ed. 2013, 52, 8828–8878. [Google Scholar] [CrossRef]
- Stoddart, J.F. Thither supramolecular chemistry? Nat. Chem. 2009, 1, 14–15. [Google Scholar] [CrossRef]
- Tschierske, C. Liquid crystals materials design and self-assembly preface. In Liquid Crystals: Materials Design and Self-Assembly; Tschierske, C., Ed.; Springer Science & Business Media: Berlin, Germany, 2012; Volume 318, pp. IX–X. [Google Scholar]
- Goodby, J.W. The nanoscale engineering of nematic liquid crystals for displays. Liq. Cryst. 2011, 38, 1363–1387. [Google Scholar] [CrossRef]
- Cantekin, S.; de Greef, T.F.; Palmans, A.R. Benzene-1, 3, 5-tricarboxamide: A versatile ordering moiety for supramolecular chemistry. Chem. Soc. Rev. 2012, 41, 6125–6137. [Google Scholar] [CrossRef]
- Desiraju, G.R.; Steiner, T. The Weak Hydrogen Bond: In Structural Chemistry and Biology; International Union of Crystal: Weinheim, Germany, 2001; Volume 9. [Google Scholar]
- Kimizuka, N.; Kawasaki, T.; Hirata, K.; Kunitake, T. Tube-like nanostructures composed of networks of complementary hydrogen bonds. J. Am. Chem. Soc. 1995, 117, 6360–6361. [Google Scholar] [CrossRef]
- George, S.J.; Tomović, Ž.; Smulders, M.M.; de Greef, T.F.; Leclère, P.E.; Meijer, E.W.; Schenning, A.P. Helicity induction and amplification in an oligo (p-phenylenevinylene) assembly through hydrogen-bonded chiral acids. Angew. Chem. Int. Ed. 2007, 46, 8206–8211. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Li, S.; Pollock, J.B.; Cook, T.R.; Chen, J.; Zhang, Y.; Ji, X.; Yu, Y.; Huang, F.; Stang, P.J. Supramolecular polymers with tunable topologies via hierarchical coordination-driven self-assembly and hydrogen bonding interfaces. Proc. Natl. Acad. Sci. USA 2013, 110, 15585–15590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, X.; Shi, B.; Wang, H.; Xia, D.; Jie, K.; Wu, Z.L.; Huang, F. Supramolecular construction of multifluorescent gels: Interfacial assembly of discrete fluorescent gels through multiple hydrogen bonding. Adv. Mater. 2015, 27, 8062–8066. [Google Scholar] [CrossRef] [PubMed]
- Buchs, J.; Vogel, L.; Janietz, D.; Prehm, M.; Tschierske, C. Chirality synchronization of hydrogen-bonded complexes of achiral n-heterocycles. Angew. Chem. Int. Ed. 2017, 56, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Gao, Y.; Ji, Y.; Wang, Y.; Liu, Z. Homochiral crystallization of single-stranded helical coordination polymers: Generated by the structure of auxiliary ligands or spontaneous symmetry breaking. CrystEngComm 2013, 15, 5598–5601. [Google Scholar] [CrossRef]
- Wu, S.T.; Wu, Y.R.; Kang, Q.Q.; Zhang, H.; Long, L.S.; Zheng, Z.; Huang, R.B.; Zheng, L.S. Chiral symmetry breaking by chemically manipulating statistical fluctuation in crystallization. Angew. Chem. Int. Ed. 2007, 46, 8475–8479. [Google Scholar] [CrossRef] [PubMed]
- Meng, W.; Ronson, T.K.; Nitschke, J.R. Symmetry breaking in self-assembled m4l6 cage complexes. Proc. Natl. Acad. Sci. USA 2013, 110, 10531–10535. [Google Scholar] [CrossRef]
- Zhou, T.-H.; Zhang, J.; Zhang, H.-X.; Feng, R.; Mao, J.-G. A ligand-conformation driving chiral generation and symmetry-breaking crystallization of a zinc (ii) organoarsonate. Chem. Commun. 2011, 47, 8862–8864. [Google Scholar] [CrossRef] [PubMed]
- Mamula, O.; von Zelewsky, A. Supramolecular coordination compounds with chiral pyridine and polypyridine ligands derived from terpenes. Coord. Chem. Rev. 2003, 242, 87–95. [Google Scholar] [CrossRef]
- Zhang, L.; Qin, L.; Wang, X.; Cao, H.; Liu, M. Supramolecular chirality in self-assembled soft materials: Regulation of chiral nanostructures and chiral functions. Adv. Mater. 2014, 26, 6959–6964. [Google Scholar] [CrossRef] [PubMed]
- Pérez-García, L.; Amabilino, D.B. Spontaneous resolution under supramolecular control. Chem. Soc. Rev. 2002, 31, 342–356. [Google Scholar] [CrossRef] [PubMed]
- Janssen, P.G.A.; Ruiz-Carretero, A.; Gonzalez-Rodriguez, D.; Meijer, E.W.; Schenning, A.P. Ph-switchable helicity of DNA-templated assemblies. Angew. Chem. Int. Ed. 2009, 48, 8103–8106. [Google Scholar] [CrossRef] [PubMed]
- Kondepudi, D.K.; Nelson, G.W. Weak neutral currents and the origin of biomolecular chirality. Nature 1985, 314, 438–441. [Google Scholar] [CrossRef]
- Berger, R.; Quack, M. Electroweak quantum chemistry of alanine: Parity violation in gas and condensed phases. Chemphyschem 2000, 1, 57–60. [Google Scholar] [CrossRef]
- Sorrenti, A.; Rodriguez-Trujillo, R.; Amabilino, D.B.; Puigmarti-Luis, J. Milliseconds make the difference in the far-from-equilibrium self-assembly of supramolecular chiral nanostructures. J. Am. Chem. Soc. 2016, 138, 6920–6923. [Google Scholar] [CrossRef]
- Sun, J.; Li, Y.; Yan, F.; Liu, C.; Sang, Y.; Tian, F.; Feng, Q.; Duan, P.; Zhang, L.; Shi, X.; et al. Control over the emerging chirality in supramolecular gels and solutions by chiral microvortices in milliseconds. Nat. Commun. 2018, 9, 2599. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, A.; Fischer, P. Absolute asymmetric reduction based on the relative orientation of achiral reactants. Angew. Chem. Int. Ed. 2009, 48, 6857–6860. [Google Scholar] [CrossRef]
- Kawasaki, T.; Kamimura, S.; Amihara, A.; Suzuki, K.; Soai, K. Enantioselective c-c bond formation as a result of the oriented prochirality of an achiral aldehyde at the single-crystal face upon treatment with a dialkyl zinc vapor. Angew. Chem. Int. Ed. 2011, 50, 6796–6798. [Google Scholar] [CrossRef]
- Fang, Y.; Ghijsens, E.; Ivasenko, O.; Cao, H.; Noguchi, A.; Mali, K.S.; Tahara, K.; Tobe, Y.; De Feyter, S. Dynamic control over supramolecular handedness by selecting chiral induction pathways at the solution-solid interface. Nat. Chem. 2016, 8, 711–717. [Google Scholar] [CrossRef]
- Wilson, A.J.; Masuda, M.; Sijbesma, R.P.; Meijer, E.W. Chiral amplification in the transcription of supramolecular helicity into a polymer backbone. Angew. Chem. Int. Ed. 2005, 44, 2275–2279. [Google Scholar] [CrossRef]
- Palmans, A.R.; Meijer, E.E.W. Amplification of chirality in dynamic supramolecular aggregates. Angew. Chem. Int. Ed. 2007, 46, 8948–8968. [Google Scholar] [CrossRef] [PubMed]
- Smulders, M.M.J.; Schenning, A.P.H.J.; Meijer, E.W. Insight into the mechanisms of cooperative self-assembly: The “sergeants-and-soldiers” principle of chiral and achiral c-3-symmetrical discotic triamides. J. Am. Chem. Soc. 2008, 130, 606–611. [Google Scholar] [CrossRef] [PubMed]
- Flores, J.J.; Bonner, W.A.; Massey, G.A. Asymmetric photolysis of (rs)-leucine with circularly polarized uv light. J. Am. Chem. Soc. 1977, 99, 3622–3625. [Google Scholar] [CrossRef] [PubMed]
- Bailey, J.; Chrysostomou, A.; Hough, J.H.; Gledhill, T.M.; McCall, A.; Clark, S.; Menard, F.; Tamura, M. Circular polarization in star-formation regions: Implications for biomolecular homochirality. Science 1998, 281, 672–674. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, J.; Kim, W.Y.; Kim, H.; Lee, S.; Lee, H.C.; Lee, Y.S.; Seo, M.; Kim, S.Y. Induction and control of supramolecular chirality by light in self-assembled helical nanostructures. Nat. Commun. 2015, 6, 6959. [Google Scholar] [CrossRef] [PubMed]
- Micali, N.; Engelkamp, H.; van Rhee, P.G.; Christianen, P.C.M.; Scolaro, L.M.; Maan, J.C. Selection of supramolecular chirality by application of rotational and magnetic forces. Nat. Chem. 2012, 4, 201–207. [Google Scholar] [CrossRef] [PubMed]
- D’Urso, A.; Randazzo, R.; Lo Faro, L.; Purrello, R. Vortexes and nanoscale chirality. Angew. Chem. Int. Ed. 2010, 49, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Escudero, C.; Crusats, J.; Díez-Pérez, I.; El-Hachemi, Z.; Ribó, J.M. Folding and hydrodynamic forces in j-aggregates of 5-phenyl-10, 15, 20-tris (4-sulfophenyl) porphyrin. Angew. Chem. Int. Ed. 2006, 118, 8200–8203. [Google Scholar] [CrossRef]
- Ribo, J.M.; El-Hachemi, Z.; Arteaga, O.; Canillas, A.; Crusats, J. Hydrodynamic effects in soft-matter self-assembly: The case of j-aggregates of amphiphilic porphyrins. Chem. Rec. 2017, 17, 713–724. [Google Scholar] [CrossRef] [PubMed]
- Crusats, J.; El-Hachemi, Z.; Ribo, J.M. Hydrodynamic effects on chiral induction. Chem. Soc. Rev. 2010, 39, 569–577. [Google Scholar] [CrossRef]
- Aquilanti, V.; Maciel, G.S. Observed molecular alignment in gaseous streams and possible chiral effects in vortices and in surface scattering. Orig. Life Evol. Biosph. 2006, 36, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Jalilah, A.J.; Asanoma, F.; Fujiki, M. Unveiling controlled breaking of the mirror symmetry of eu(fod)(3) with alpha-/beta-pinene and binap by circularly polarised luminescence (cpl), cpl excitation, and f-19-/p-31{h-1}-nmr spectra and mulliken charges. Inorg. Chem. Front. 2018, 5, 2718–2733. [Google Scholar] [CrossRef]
- Fujiki, M. Supramolecular chirality: Solvent chirality transfer in molecular chemistry and polymer chemistry. Symmetry-Basel 2014, 6, 677–703. [Google Scholar] [CrossRef]
- McBride, J.M.; Carter, R.L. Spontaneous resolution by stirred crystallization. Angew. Chem. Int. Ed. 1991, 30, 293–295. [Google Scholar] [CrossRef]
- Kondepudi, D.K.; Bullock, K.L.; Digits, J.A.; Yarborough, P.D. Stirring rate as a critical parameter in chiral-symmetry breaking crystallization. J. Am. Chem. Soc. 1995, 117, 401–404. [Google Scholar] [CrossRef]
- Viedma, C. Chiral symmetry breaking during crystallization: Complete chiral purity induced by nonlinear autocatalysis and recycling. Phys. Rev. Lett. 2005, 94, 065504. [Google Scholar] [CrossRef] [PubMed]
- Sogutoglu, L.C.; Steendam, R.R.; Meekes, H.; Vlieg, E.; Rutjes, F.P. Viedma ripening: A reliable crystallisation method to reach single chirality. Chem. Soc. Rev. 2015, 44, 6723–6732. [Google Scholar] [CrossRef] [PubMed]
- Palmans, A.R.A. Deracemisations under kinetic and thermodynamic control. Mol. Syst. Des. Eng. 2017, 2, 34–46. [Google Scholar] [CrossRef] [Green Version]
- Steendam, R.R.; Verkade, J.M.; van Benthem, T.J.; Meekes, H.; van Enckevort, W.J.; Raap, J.; Rutjes, F.P.; Vlieg, E. Emergence of single-molecular chirality from achiral reactants. Nat. Commun. 2014, 5, 5543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engwerda, A.H.J.; Koning, N.; Tinnemans, P.; Meekes, H.; Bickelhaupt, F.M.; Rutjes, F.P.J.T.; Vlieg, E. Deracemization of a racemic allylic sulfoxide using viedma ripening. Cryst. Growth Des. 2017, 17, 4454–4457. [Google Scholar] [CrossRef] [PubMed]
- Noorduin, W.L.; Meekes, H.; van Enckevort, W.J.P.; Millemaggi, A.; Leeman, M.; Kaptein, B.; Kellogg, R.M.; Vlieg, E. Complete deracemization by attrition-enhanced ostwald ripening elucidated. Angew. Chem. Int. Ed. 2008, 47, 6445–6447. [Google Scholar] [CrossRef] [PubMed]
- Hein, J.E.; Cao, B.H.; Viedma, C.; Kellogg, R.M.; Blackmond, D.G. Pasteur’s tweezers revisited: On the mechanism of attrition-enhanced deracemization and resolution of chiral conglomerate solids. J. Am. Chem. Soc. 2012, 134, 12629–12636. [Google Scholar] [CrossRef] [PubMed]
- Noorduin, W.L.; Izumi, T.; Millemaggi, A.; Leeman, M.; Meekes, H.; Van Enckevort, W.J.P.; Kellogg, R.M.; Kaptein, B.; Vlieg, E.; Blackmond, D.G. Emergence of a single solid chiral state from a nearly racemic amino acid derivative. J. Am. Chem. Soc. 2008, 130, 1158–1159. [Google Scholar] [CrossRef] [PubMed]
- Viedma, C.; Ortiz, J.E.; de Torres, T.; Izumi, T.; Blackmond, D.G. Evolution of solid phase homochirality for a proteinogenic amino acid. J. Am. Chem. Soc. 2008, 130, 15274–15275. [Google Scholar] [CrossRef] [PubMed]
- Tsogoeva, S.B.; Wei, S.; Freund, M.; Mauksch, M. Generation of highly enantioenriched crystalline products in reversible asymmetric reactions with racemic or achiral catalysts. Angew. Chem. Int. Ed. 2009, 48, 590–594. [Google Scholar] [CrossRef] [PubMed]
- Viedma, C.; Cintas, P. Homochirality beyond grinding: Deracemizing chiral crystals by temperature gradient under boiling. Chem. Commun. 2011, 47, 12786–12788. [Google Scholar] [CrossRef] [PubMed]
- Suwannasang, K.; Flood, A.E.; Rougeot, C.; Coquerel, G. Use of programmed damped temperature cycles for the deracemization of a racemic suspension of a conglomerate forming system. Org. Process Res. Dev. 2017, 21, 623–630. [Google Scholar] [CrossRef]
- Ribó, J.M.; Hochberg, D.; Crusats, J.; El-Hachemi, Z.; Moyano, A. Spontaneous mirror symmetry breaking and origin of biological homochirality. J. R. Soc. Interface 2017, 14, 20170699. [Google Scholar] [CrossRef]
- Rubires, R.; Farrera, J.A.; Ribo, J.M. Stirring effects on the spontaneous formation of chirality in the homoassociation of diprotonated meso-tetraphenylsulfonato porphyrins. Chem. Eur. J. 2001, 7, 436–446. [Google Scholar] [CrossRef]
- Raudino, A.; Pannuzzo, M. Hydrodynamic-induced enantiomeric enrichment of self-assemblies: Role of the solid-liquid interface in chiral nucleation and seeding. J. Chem. Phys. 2012, 137, 134902. [Google Scholar] [CrossRef]
- Kitagawa, Y.; Segawa, H.; Ishii, K. Magneto-chiral dichroism of organic compounds. Angew. Chem. Int. Ed. 2011, 50, 9133–9136. [Google Scholar] [CrossRef] [PubMed]
- Hamba, F.; Niimura, K.; Kitagawa, Y.; Ishii, K. Helicity transfer in rotary evaporator flow. Phys. Fluids 2014, 26, 017101. [Google Scholar] [CrossRef]
- Heffern, M.C.; Matosziuk, L.M.; Meade, T.J. Lanthanide probes for bioresponsive imaging. Chem. Rev. 2014, 114, 4496–4539. [Google Scholar] [CrossRef] [PubMed]
- Carr, R.; Evans, N.H.; Parker, D. Lanthanide complexes as chiral probes exploiting circularly polarized luminescence. Chem. Soc. Rev. 2012, 41, 7673–7686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schadt, M. Liquid crystal materials and liquid crystal displays. Annu. Rev. Mater. Sci. 1997, 27, 305–379. [Google Scholar] [CrossRef]
- Kim, D.-Y.; Kim, D.-Y. Potential application of spintronic light-emitting diode to binocular vision for three-dimensional display technology. J. Korean Phys. Soc. 2006, 49, 505–508. [Google Scholar]
- Zinna, F.; Di Bari, L. Lanthanide circularly polarized luminescence: Bases and applications. Chirality 2015, 27, 1–13. [Google Scholar] [CrossRef]
- Muller, G. Luminescent chiral lanthanide(iii) complexes as potential molecular probes. Dalton Trans. 2009, 9692–9707. [Google Scholar] [CrossRef] [Green Version]
- Wagenknecht, C.; Li, C.-M.; Reingruber, A.; Bao, X.-H.; Goebel, A.; Chen, Y.-A.; Zhang, Q.; Chen, K.; Pan, J.-W. Experimental demonstration of a heralded entanglement source. Nat. Photonics 2010, 4, 549–552. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Yang, G.; Xia, H.; Zou, G.; Zhang, Q.; Gao, J. Enantioselective synthesis of helical polydiacetylene by application of linearly polarized light and magnetic field. Nat. Commun. 2014, 5, 5050. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Cohen, A.E. Enhanced enantioselectivity in excitation of chiral molecules by superchiral light. Science 2011, 332, 333–336. [Google Scholar] [CrossRef] [PubMed]
- Sato, I.; Sugie, R.; Matsueda, Y.; Furumura, Y.; Soai, K. Asymmetric synthesis utilizing circularly polarized light mediated by the photoequilibrium of chiral olefins in conjunction with asymmetric autocatalysis. Angew. Chem. Int. Ed. 2004, 43, 4490–4492. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, T.; Sato, M.; Ishiguro, S.; Saito, T.; Morishita, Y.; Sato, I.; Nishino, H.; Inoue, Y.; Soai, K. Enantioselective synthesis of near enantiopure compound by asymmetric autocatalysis triggered by asymmetric photolysis with circularly polarized light. J. Am. Chem. Soc. 2005, 127, 3274–3275. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; da Costa, R.C.; Fuchter, M.J.; Campbell, A.J. Circularly polarized light detection by a chiral organic semiconductor transistor. Nat. Photonics 2013, 7, 634–638. [Google Scholar] [CrossRef]
- Meinert, C.; Bredehoeft, J.H.; Filippi, J.-J.; Baraud, Y.; Nahon, L.; Wien, F.; Jones, N.C.; Hoffmann, S.V.; Meierhenrich, U.J. Anisotropy spectra of amino acids. Angew. Chem. Int. Ed. 2012, 51, 4484–4487. [Google Scholar] [CrossRef] [PubMed]
- Meinert, C.; Hoffmann, S.V.; Cassam-Chenai, P.; Evans, A.C.; Giri, C.; Nahon, L.; Meierhenrich, U.J. Photonenergy-controlled symmetry breaking with circularly polarized light. Angew. Chem. Int. Ed. 2014, 53, 210–214. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Yang, G.; Kuai, Y.; Shan, S.; Yang, L.; Hu, J.; Zhang, D.; Zhang, Q.; Zou, G. Dissymmetry enhancement in enantioselective synthesis of helical polydiacetylene by application of superchiral light. Nat. Commun. 2018, 9, 5117. [Google Scholar] [CrossRef]
- Fujiki, M.; Kawagoe, Y.; Nakano, Y.; Nakao, A. Mirror-symmetry-breaking in poly (9,9-di-n-octylfluorenyl-2,7-diyl)-alt-biphenyl (pf8p2) is susceptible to terpene chirality, achiral solvents, and mechanical stirring. Molecules 2013, 18, 7035–7057. [Google Scholar] [CrossRef]
- Noorduin, W.L.; Bode, A.A.C.; van der Meijden, M.; Meekes, H.; van Etteger, A.F.; van Enckevort, W.J.P.; Christianen, P.C.M.; Kaptein, B.; Kellogg, R.M.; Rasing, T.; et al. Complete chiral symmetry breaking of an amino acid derivative directed by circularly polarized light. Nat. Chem. 2009, 1, 729–732. [Google Scholar] [CrossRef] [Green Version]
- Japp, F.R. Asymmetry and vitalism. Nature 1898, 58, 616–618. [Google Scholar] [CrossRef]
- Feringa, B.L.; Van Delden, R.A. Absolute asymmetric synthesis: The origin, control, and amplification of chirality. Angew. Chem. Int. Ed. 1999, 38, 3418–3438. [Google Scholar] [CrossRef]
- Yamagata, Y. A hypothesis for the asymmetric appearance of biomolecules on earth. J. Theor. Biol. 1966, 11, 495. [Google Scholar] [CrossRef]
- Avalos, M.N.; Babiano, R.; Cintas, P.; Jiménez, J.L.; Palacios, J.C. From parity to chirality: Chemical implications revisited. Tetrahedron Asymmetry 2000, 11, 2845–2874. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sang, Y.; Liu, M. Symmetry Breaking in Self-Assembled Nanoassemblies. Symmetry 2019, 11, 950. https://doi.org/10.3390/sym11080950
Sang Y, Liu M. Symmetry Breaking in Self-Assembled Nanoassemblies. Symmetry. 2019; 11(8):950. https://doi.org/10.3390/sym11080950
Chicago/Turabian StyleSang, Yutao, and Minghua Liu. 2019. "Symmetry Breaking in Self-Assembled Nanoassemblies" Symmetry 11, no. 8: 950. https://doi.org/10.3390/sym11080950
APA StyleSang, Y., & Liu, M. (2019). Symmetry Breaking in Self-Assembled Nanoassemblies. Symmetry, 11(8), 950. https://doi.org/10.3390/sym11080950