Two Parametric Kinds of Eulerian-Type Polynomials Associated with Euler’s Formula
Abstract
:1. Introduction
2. New Families of Two Parametric Kinds of Eulerian-Type Polynomials
3. Partial Derivative Equations of Generating Functions for Two Parametric Kinds of Eulerian-Type Polynomials
3.1. Partial Derivative Formulas for the Polynomials
3.2. Partial Derivative Formulas for the Polynomials
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Apostol, T. On the Lerch zeta function. Pac. J. Math. 1951, 1, 161–167. [Google Scholar] [CrossRef] [Green Version]
- Bayad, A.; Kim, T. Identities for Apostol-type Frobenius–Euler polynomials resulting from the study of a nonlinear operator. Russ. J. Math. Phys. 2016, 23, 164–171. [Google Scholar] [CrossRef]
- Cangul, I.N.; Cevik, S.; Simsek, Y. Generalization of q-Apostol-type Eulerian numbers and polynomials, and their interpolation functions. Adv. Stud. Contemp. Math. 2015, 25, 211–220. [Google Scholar]
- Carlitz, L. Eulerian numbers and polynomials. Math. Mag. 1959, 32, 247–260. [Google Scholar] [CrossRef]
- Choi, J.; Kim, D.S.; Kim, T.; Kim, Y.H. A note on some identities of Frobenius–Euler numbers and polynomials. Int. J. Math. Math. Sci. 2012, 861797, 1–9. [Google Scholar] [CrossRef]
- Duan, R.; Shen, S. Bernoulli polynomials and their some new congruence properties. Symmetry 2019, 11, 365. [Google Scholar] [CrossRef]
- Kilar, N.; Simsek, Y. A new family of Fubini type numbers and polynomials associated with Apostol–Bernoulli numbers and polynomials. J. Korean Math. Soc. 2017, 54, 1605–1621. [Google Scholar]
- Kilar, N.; Simsek, Y. Relations on Bernoulli and Euler polynomials related to trigonometric functions. Adv. Stud. Contemp. Math. 2019, 29, 191–198. [Google Scholar]
- Kilar, N.; Simsek, Y. Some classes of generating functions for generalized Hermite- and Chebyshev-type polynomials: Analysis of Euler’s formula. arXiv 2019, arXiv:1907.03640. [Google Scholar]
- Kim, D.S.; Kim, T. Some new identities of Frobenius–Euler numbers and polynomials. J. Inequal. Appl. 2012, 307, 1–10. [Google Scholar] [CrossRef]
- Kim, T.; Ryoo, C.S. Some identities for Euler and Bernoulli polynomials and their zeros. Axioms 2018, 7, 56. [Google Scholar] [CrossRef]
- Kucukoglu, I.; Simsek, Y. Identities and relations on the q-Apostol type Frobenius–Euler numbers and polynomials. J. Korean Math. Soc. 2019, 56, 265–284. [Google Scholar]
- Kurt, B.; Simsek, Y. On the generalized Apostol-type Frobenius–Euler polynomials. Adv. Differ. Equ. 2013, 1, 1–9. [Google Scholar] [CrossRef]
- Luo, Q.-M. Apostol–Euler polynomials of higher order and Gaussian hypergeometric functions. Taiwan. J. Math. 2006, 10, 917–925. [Google Scholar] [CrossRef]
- Luo, Q.-M.; Srivastava, H.M. Some generalizations of the Apostol–Genocchi polynomials and the Stirling numbers of the second kind. Appl. Math. Comput. 2011, 217, 5702–5728. [Google Scholar]
- Masjed-Jamei, M.; Koepf, W. Symbolic computation of some power-trigonometric series. J. Symb. Comput. 2017, 80, 273–284. [Google Scholar] [CrossRef]
- Simsek, Y. Complete sum of products of (h; q)-extension of Euler polynomials and numbers. J. Differ. Equ. Appl. 2010, 16, 1331–1348. [Google Scholar] [CrossRef]
- Simsek, Y. Generating functions for q-Apostol type Frobenius–Euler numbers and polynomials. Axioms 2012, 1, 395–403. [Google Scholar] [CrossRef]
- Simsek, Y. Generating functions for generalized Stirling type numbers, Array type polynomials, Eulerian type polynomials and their applications. Fixed Point Theory Appl. 2013, 87, 1–28. [Google Scholar] [CrossRef]
- Simsek, Y. Generating functions for finite sums involving higher powers of binomial coefficients: Analysis of hypergeometric functions including new families of polynomials and numbers. J. Math. Anal. Appl. 2019, 477, 1328–1352. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M. Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials. Appl. Math. Inf. Sci. 2011, 5, 390–444. [Google Scholar]
- Srivastava, H.M.; Kim, K.; Simsek, Y. q-Bernoulli numbers and polynomials associated with multiple q-zeta functions and basic L-series. Russ. J. Math. Phys. 2005, 12, 241–268. [Google Scholar]
- Srivastava, H.M.; Boutiche, M.A.; Rahmani, M. Some explicit formulas for the Frobenius–Euler polynomials of higher order. Appl. Math. Inf. Sci. 2017, 11, 621–626. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Srivastava, H.M.; Masjed, M.J.; Beyki, M.R. A parametric type of the Apostol–Bernoulli, Apostol–Euler and Apostol–Genocchi polynomials. Appl. Math. Inf. Sci. 2018, 12, 907–916. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Kizilates, C. A parametric kind of the Fubini-type polynomials. RACSAM 2019. [Google Scholar] [CrossRef]
- Zhao, J.H.; Chen, Z.Y. Some symmetric identities involving Fubini polynomials and Euler numbers. Symmetry 2018, 10, 303. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kilar, N.; Simsek, Y. Two Parametric Kinds of Eulerian-Type Polynomials Associated with Euler’s Formula. Symmetry 2019, 11, 1097. https://doi.org/10.3390/sym11091097
Kilar N, Simsek Y. Two Parametric Kinds of Eulerian-Type Polynomials Associated with Euler’s Formula. Symmetry. 2019; 11(9):1097. https://doi.org/10.3390/sym11091097
Chicago/Turabian StyleKilar, Neslihan, and Yilmaz Simsek. 2019. "Two Parametric Kinds of Eulerian-Type Polynomials Associated with Euler’s Formula" Symmetry 11, no. 9: 1097. https://doi.org/10.3390/sym11091097
APA StyleKilar, N., & Simsek, Y. (2019). Two Parametric Kinds of Eulerian-Type Polynomials Associated with Euler’s Formula. Symmetry, 11(9), 1097. https://doi.org/10.3390/sym11091097