Angle Estimation for Knee Joint Movement Based on PCA-RELM Algorithm
Abstract
:1. Introduction
2. Principles and Methods
2.1. sEMG Feature Extraction
2.2. Principal Component Analysis
2.3. Regularized Extreme Learning Machine
3. Experimental Data Acquisition and Processing
3.1. Experiment Process
3.2. sEMG Signal and Joint Angle Signal Acquisition
3.2.1. sEMG Signal Acquisition
3.2.2. Joint Angle Signal Acquisition
3.3. EMG Signal Feature Dimension Reduction
3.4. Regularization Overrun Learning Machine Model Training
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, H.; Zhang, Y.; Li, G.; Fang, Y.; Liu, H. Surface electromyography feature extraction via convolutional neural network. Int. J. Mach. Learn. Cybern. 2019, 10, 1–12. [Google Scholar] [CrossRef]
- Chen, X.; Niu, X.; Wu, D.; Yu, Y.; Zhang, X. Investigation of the intra-and inter-limb muscle coordination of hands-and-knees crawling in human adults by means of muscle synergy analysis. Entropy 2017, 19, 229. [Google Scholar] [CrossRef]
- Mei, C.; Gao, F.; Li, Y. A determination method for gait event based on acceleration sensors. Sensors 2019, 19, 5499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Zhang, X. Surface electromyography decoding for continuous movement of human lower limb during walking. J. Xi’an Jiaotong Univ. 2016, 50, 61–67. [Google Scholar]
- Ding, Q.; Xiong, A.; Zhao, X.; Han, J. A review on researches and applications of sEMG-based motion intent recognition methods. Acta Autom. Sin. 2016, 42, 13–25. [Google Scholar]
- Artemiadis, P.K.; Kyriakopoulos, K.J. EMG-based control of a robot arm using low-dimensional embeddings. IEEE Trans. Robot. 2010, 26, 393–398. [Google Scholar] [CrossRef]
- Huang, C.; Klein, C.S.; Meng, Z.; Zhang, Y.; Li, S.; Zhou, P. Innervation zone distribution of the biceps brachii muscle examined using voluntary and electrically-evoked high-density surface EMG. J. Neuroeng. Rehabil. 2019, 16, 73. [Google Scholar] [CrossRef]
- Bingham, A.; Arjunan, S.P.; Jelfs, B.; Kumar, D.K. Normalised mutual information of high-density surface electromyography during muscle fatigue. Entropy 2017, 19, 697. [Google Scholar] [CrossRef] [Green Version]
- Scovil, C.Y.; Ronsky, J.L. Sensitivity of a Hill-based muscle model to perturbations in model parameters. J. Biomech. 2006, 39, 2055–2063. [Google Scholar] [CrossRef]
- Cavallaro, E.E.; Jacob, R.; Perry, J.C.; Stephen, B. Real-time myoprocessors for a neural controlled powered exoskeleton arm. IEEE Trans. Biomed. Eng. 2006, 53, 2387–2396. [Google Scholar] [CrossRef]
- Massimo Sartori, M.R.; Farina, D.; Lloyd, D.G. EMG-driven forward-dynamic estimation of muscle force and joint moment about multiple degrees of freedom in the human lower extremity. PLoS ONE 2012, 7, e52618. [Google Scholar]
- Chen, J.; Zhang, X.; Li, R. A novel design approach for lower limb rehabilitation training robot. J. Xi’an Jiaotong Univ. 2015, 49, 26–33. [Google Scholar]
- Wang, Y.; Guo, Q.; Li, W. Predictive model based on improved BP neural networks and it’s application. Comput. Meas. Control 2005, 13, 39–42. [Google Scholar]
- Zhang, F.; Li, P.; Hou, Z.G.; Lu, Z.; Chen, Y.; Li, Q.; Tan, M. sEMG-based continuous estimation of joint angles of human legs by using BP neural network. Neurocomputing 2012, 78, 139–148. [Google Scholar] [CrossRef]
- Dai, H.Q.; Zhang, J.; Shen, Z.; Zhang, L. Yanan, Application of GRNN in ankle movement prediction based on surface electromyography. Chin. J. Sci. Instrum. 2013, 34, 845–852. [Google Scholar]
- Zhang, Q.; Liu, R.; Chen, W.; Xiong, C. Simultaneous and continuous estimation of shoulder and elbow kinematics from surface EMG signals. Front. Neurosci. 2017, 11, 280. [Google Scholar] [CrossRef] [PubMed]
- Ding, Q.; Zhao, X.; Han, J. EMG-based estimation for multi-joint continuous movement of human upper limb. Robot 2014, 36, 469–476. [Google Scholar]
- Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: A new learning scheme of feedforward neural networks. Neural Netw. 2004, 2, 985–990. [Google Scholar]
- Huang, G.B.; Siew, C.K. Extreme learning machine with randomly assigned RBF kernels. Int. J. Inf. Technol. 2005, 11, 16–24. [Google Scholar]
- Mohammed, A.A.; Minhas, R.; Wu, Q.M.J.; Sid-Ahmed, M.A. Human face recognition based on multidimensional PCA and extreme learning machine. Pattern Recognit. 2011, 44, 2588–2597. [Google Scholar] [CrossRef]
- Chen, X.; Dong, Z.Y.; Meng, K.; Xu, Y.; Wong, K.P.; Ngan, H.W. Electricity price forecasting with extreme learning machine and bootstrapping. IEEE Trans. Power Syst. 2012, 27, 2055–2062. [Google Scholar] [CrossRef]
- Sun, Z.L.; Choi, T.M.; Au, K.F.; Yu, Y. Sales forecasting using extreme learning machine with applications in fashion retailing. Decis. Support Syst. 2009, 46, 411–419. [Google Scholar] [CrossRef]
- Nizar, A.H.; Dong, Z.Y.; Wang, Y. Power utility nontechnical loss analysis with extreme learning machine method. IEEE Trans. Power Syst. 2008, 23, 946–955. [Google Scholar] [CrossRef]
- Huang, G.B.; Liang, N.Y.; Rong, H.J.; Saratchandran, P.; Sundararajan, N. On-line sequential extreme learning machine. Comput. Intell. 2005, 2005, 232–237. [Google Scholar]
- Yang, Y.; Wang, Y.; Yuan, X. Bidirectional extreme learning machine for regression problem and its learning effectiveness. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23, 1498–1505. [Google Scholar] [CrossRef]
- Deng, W.; Zheng, Q.; Chen, L. Regularized extreme learning machine. In Proceedings of the 2009 IEEE Symposium on Computational Intelligence and Data Mining, Nashville, TN, USA, 30 March–2 April 2009; pp. 389–395. [Google Scholar]
- Huang, G.B.; Zhou, H.; Ding, X.; Zhang, R. Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B 2012, 42, 513–529. [Google Scholar] [CrossRef] [Green Version]
- Gumaei, A.; Hassan, M.M.; Hassan, M.R.; Alelaiwi, A.; Fortino, G. A hybrid feature extraction method with regularized extreme learning machine for brain tumor classification. IEEE Access 2019, 7, 36266–36273. [Google Scholar] [CrossRef]
- Liouane, Z.; Lemlouma, T.; Roose, P.; Weis, F.; Messaoud, H. An improved extreme learning machine model for the prediction of human scenarios in smart homes. Appl. Intell. 2017, 48, 2017–2030. [Google Scholar] [CrossRef]
- Mu, Y.; Peng, C.; Zheng, X.; Zheng, E. Time-frequency analysis of surface myoelectric signals during dynamic contractions. Acta Biophys. Sin. 2004, 20, 323–328. [Google Scholar]
- Wu, Y.; Song, R. Effects of task demands on kinematics and EMG signals during tracking tasks using multiscale entropy. Entropy 2017, 19, 307. [Google Scholar] [CrossRef] [Green Version]
- Hansen, L.K.; Salamon, P. Neural network ensembles. IEEE Trans. Pattern Anal. Mach. Intell. 1990, 12, 993–1001. [Google Scholar] [CrossRef] [Green Version]
- Neumann, D.A. Kinesiology of the Kinesiology of the Musculoskeletal System: Foundations for Rehabilitation; Elsevier Health Sciences: St. Louis, MO, USA, 2013. [Google Scholar]
- Ali, A.S.; Radwan, A.G.; Soliman, A.M. Fractional order butterworth filter: Active and passive realizations. IEEE J. Emerg. Sel. Top. Circuits Syst. 2013, 3, 346–354. [Google Scholar] [CrossRef]
- Chen, H.; Gao, F.; Chen, C.; Tian, T. Estimation of ankle angle based on multi-feature fusion with random forest. In Proceedings of the 37th Chinese Control Conference (CCC 2018), Wuhan, China, 25–27 July 2018; pp. 5549–5553. [Google Scholar]
- Markatou, M.; Tian, H.; Biswas, S.; Hripcsak, G. Analysis of variance of cross-validation estimators of the generalization error. J. Mach. Learn. Res. 2005, 6, 1127–1168. [Google Scholar]
- Li, Q.L.; Song, Y.; Hou, Z.G. Estimation of lower limb periodic motions from sEMG using least squares support vector regression. Neural Process. Lett. 2015, 41, 371–388. [Google Scholar] [CrossRef]
No. | Position | No. | Position |
---|---|---|---|
1 | medial femoral muscle | 4 | biceps femoris |
2 | rectus femoris muscle | 5 | semitendinosus |
3 | lateral femoral muscle | 6 | gastrocnemius muscle |
Group | Root Mean Square Error (RMSE) | ρ | Train Time (s) | ||||||
---|---|---|---|---|---|---|---|---|---|
Back Propagation (BP) | Support Vector Machine (SVM) | RELM | BP | SVM | RELM | BP | SVM | RELM | |
G1 | 8.285 | 7.451 | 7.224 | 0.964 | 0.971 | 0.974 | 2.478 | 0.071 | 0.021 |
G2 | 8.901 | 8.053 | 8.160 | 0.949 | 0.967 | 0.961 | 2.884 | 0.064 | 0.031 |
G3 | 8.263 | 7.315 | 7.188 | 0.965 | 0.978 | 0.976 | 2.232 | 0.081 | 0.012 |
G4 | 7.046 | 6.561 | 6.785 | 0.967 | 0.981 | 0.974 | 2.431 | 0.062 | 0.017 |
G5 | 9.847 | 9.769 | 9.497 | 0.921 | 0.929 | 0.937 | 2.784 | 0.061 | 0.018 |
G6 | 12.480 | 11.908 | 11.841 | 0.886 | 0.907 | 0.910 | 2.421 | 0.072 | 0.021 |
G7 | 11.93 | 9.741 | 9.990 | 0.900 | 0.941 | 0.933 | 2.714 | 0.061 | 0.034 |
G8 | 8.174 | 7.283 | 7.141 | 0.951 | 0.968 | 0.966 | 2.413 | 0.064 | 0.012 |
mean | 9.366 | 8.510 | 8.478 | 0.938 | 0.955 | 0.954 | 2.545 | 0.067 | 0.021 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Y.; Gao, F.; Chen, H. Angle Estimation for Knee Joint Movement Based on PCA-RELM Algorithm. Symmetry 2020, 12, 130. https://doi.org/10.3390/sym12010130
Deng Y, Gao F, Chen H. Angle Estimation for Knee Joint Movement Based on PCA-RELM Algorithm. Symmetry. 2020; 12(1):130. https://doi.org/10.3390/sym12010130
Chicago/Turabian StyleDeng, Yanxia, Farong Gao, and Huihui Chen. 2020. "Angle Estimation for Knee Joint Movement Based on PCA-RELM Algorithm" Symmetry 12, no. 1: 130. https://doi.org/10.3390/sym12010130
APA StyleDeng, Y., Gao, F., & Chen, H. (2020). Angle Estimation for Knee Joint Movement Based on PCA-RELM Algorithm. Symmetry, 12(1), 130. https://doi.org/10.3390/sym12010130