Research on Spectrum Optimization Technology for a Wireless Communication System
Abstract
:1. Introduction
2. General Function Model with the Minimal Spectral Energy Leakage
3. Limitations of the General Function Model
4. Solution and Analysis of Signal with High-Quality Spectrum Characteristics
4.1. Numerical Solution of Signal with High-Quality Spectral Characteristics
4.2. Comparative Analysis of Energy Spectrum under Different Constraints
4.3. Spectral Analysis of Signals with Additional Frequency-Domain Restrictions
4.4. Comparative Analysis of Spectral Characteristics under Different Constraints at n = 2
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Han, S.H.; Lee, J.H. An overview of peak-to-average power ratio reduction techniques for multicarrier transmission. IEEE Trans. Wirel. Commun. 2005, 12, 56–65. [Google Scholar] [CrossRef]
- Sahin, A.; Guvene, I.; Sian, H. A Survey on Multicarrier Communications: Prototype Filters, Lattice Structures, and Implementation Aspects. IEEE Commun. Surv. Tutor. 2014, 16, 1312–1338. [Google Scholar] [CrossRef] [Green Version]
- Chevalier, P.; Pipon, F. New insights into optimal widely linear array receivers for the demodulation of BPSK, MSK, and GMSK signals corrupted by noncircular interferences-application to SAIC. IEEE Trans. Signal Process. 2006, 54, 870–883. [Google Scholar] [CrossRef]
- Shen, Z.; Andrews, J.G.; Evans, B.L. Adaptive resource allocation in multiuser OFDM systems with proportional rate constraints. IEEE Trans. Wirel. Commun. 2005, 4, 2726–2737. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Li, Y.; Zakharov, Y.V.; Xue, W.; Shi, W. A Kernel Affine Projection-Like Algorithm in Reproducing Kernel Hilbert Space. IEEE Trans. Circuits Syst. II Express Briefs 2019, 14, 1–5. [Google Scholar] [CrossRef]
- Armstrong, J. OFDM for Optical Communications. J. Lightw. Technol. 2009, 27, 189–204. [Google Scholar] [CrossRef]
- Jang, J.; Lee, K.B. Transmit power adaptation for multiuser OFDM systems. IEEE J. Sel. Areas Commun. 2003, 21, 171–178. [Google Scholar] [CrossRef] [Green Version]
- Farhang-Boroujeny, B. OFDM Versus Filter Bank Multicarrier. IEEE Commun. Mag. 2011, 28, 92–112. [Google Scholar] [CrossRef]
- Siohan, P.; Siclet, C.; Lacaille, N. Analysis and design of OFDM/OQAM systems based on filterbank theory. IEEE Trans. Signal Process. 2002, 50, 1170–1183. [Google Scholar] [CrossRef] [Green Version]
- Mesleh, R.Y.; Haas, H.; Sinanovic, S.; Ahn, C.W.; Yun, S. Spatial Modulation. IEEE Trans. Veh. Technol. 2008, 57, 2228–2241. [Google Scholar] [CrossRef]
- Michailow, N.; Mendes, L.; Matthé, M.; Gaspar, I.; Festag, A.; Fettweis, G. Robust WHT-GFDM for the Next Generation of Wireless Networks. IEEE Commun. Lett. 2015, 19, 106–109. [Google Scholar] [CrossRef]
- Tao, Y.; Liu, L.; Liu, S.; Zhang, Z. A survey: Several technologies of non-orthogonal transmission for 5G. China Commun. 2015, 12, 1–15. [Google Scholar] [CrossRef]
- Farhang, A.; Marchetti, N.; Doyle, L.E. Low-Complexity Modem Design for GFDM. IEEE Trans. Signal Process. 2016, 64, 1507–1518. [Google Scholar] [CrossRef] [Green Version]
- Matthé, M.; Mendes, L.L.; Fettweis, G. Generalized Frequency Division Multiplexing in a Gabor Transform Setting. IEEE Commun. Lett. 2014, 18, 1379–1382. [Google Scholar] [CrossRef]
- Qu, D.; Lu, S.; Jiang, T. Multi-Block Joint Optimization for the Peak-to-Average Power Ratio Reduction of FBMC-OQAM Signals. IEEE Trans. Signal Process. 2013, 61, 1605–1613. [Google Scholar] [CrossRef]
- Ihalainen, T.; Ikhlef, A.; Louveaux, J.; Renfors, M. Channel Equalization for Multi-Antenna FBMC/OQAM Receivers. IEEE Trans. Veh. Technol. 2011, 60, 2070–2085. [Google Scholar] [CrossRef]
- Michailow, N.; Matthe, M.; Gaspar, I.S.; Caldevilla, A.N.; Mendes, L.L.; Festag, A.; Fettweis, G. Generalized Frequency Division Multiplexing for 5th Generation Cellular Networks. IEEE Trans. Commun. 2014, 62, 3045–3061. [Google Scholar] [CrossRef]
- Saeedi-Sourck, H.; Wu, Y.; Bergmans, J.W.M.; Sadri, S.; Farhang-Boroujeny, B. Sensitivity analysis of offset QAM multicarrier systems to residual carrier frequency and timing offsets. Signal Process. 2011, 91, 1604–1612. [Google Scholar] [CrossRef]
- Zhang, L.; Xiao, P.; Zafar, A.; Quddus, A.; Tafazolli, R. FBMC System: An Insight Into Doubly Dispersive Channel Impact. IEEE Trans. Veh. Technol. 2016, 66, 3942–3956. [Google Scholar] [CrossRef] [Green Version]
- Caus, M.; Pérez-Neira, A.I. Multi-Stream Transmission for Highly Frequency Selective Channels in MIMO-FBMC/OQAM Systems. IEEE Trans. Signal Process. 2013, 62, 786–796. [Google Scholar] [CrossRef]
- Zhang, D.; Matthé, M.; Mendes, L.L.; Fettweis, G. A Study on the Link Level Performance of Advanced Multicarrier Waveforms Under MIMO Wireless Communication Channels. IEEE Trans. Wirel. Commun. 2017, 16, 2350–2365. [Google Scholar] [CrossRef]
- Xu, Y.; Xue, W.; Shang, W. A Pan-Function Model for the Utilization of Bandwidth Improvement and PAPR Reduction. Math. Probl. Eng. 2014, 2014. [Google Scholar] [CrossRef]
m | ||||||||
---|---|---|---|---|---|---|---|---|
3 | 1.5478 | 0.8877 | 0.1163 | 0.0025 | - | - | - | - |
4 | 1.5280 | 0.9011 | 0.1438 | 0.0052 | −0.0015 | - | - | - |
5 | 1.5252 | 0.9038 | 0.1413 | −0.0004 | −0.0003 | 0.0002 | - | - |
6 | 1.5077 | 0.9155 | 0.1585 | −0.0029 | 0.0003 | −0.00002 | −0.00001 | - |
7 | 1.4769 | 0.9339 | 0.1931 | −0.0022 | 0.0002 | 0.00001 | 0.00002 | 0.00002 |
m | ||||||||
---|---|---|---|---|---|---|---|---|
4 | 1.4479 | 0.9540 | 0.2256 | −0.0027 | 0.0017 | - | - | - |
5 | 1.3873 | 0.9687 | 0.3059 | 0.0319 | −0.0008 | −0.0018 | - | - |
6 | 1.3812 | 0.9727 | 0.3127 | 0.0301 | −0.0006 | −0.00004 | 0.00004 | - |
7 | 1.3597 | 0.9782 | 0.3391 | 0.0393 | −0.0013 | 0.0001 | −0.00001 | −0.000002 |
m | ||||||||
---|---|---|---|---|---|---|---|---|
5 | 1.331 | 0.9857 | 0.3844 | 0.0592 | −0.0007 | 0.0003 | - | - |
6 | 1.3279 | 0.9843 | 0.3841 | 0.0598 | −0.0004 | 0.0002 | −0.00007 | - |
7 | 1.3269 | 0.9875 | 0.3842 | 0.0596 | −0.0003 | 0.0002 | −0.00006 | 0.00002 |
n | the Number of Lines | m | |
---|---|---|---|
2 | Figure 2, line 1 | 6 | 1.470202 |
Figure 2, line 2 | 1.780325 | ||
4 | Figure 3, line 1 | 1.855372 | |
Figure 3, line 2 | 2.242426 | ||
6 | Figure 4, line 1 | 2.197020 | |
Figure 4, line 2 | 2.309111 |
m | −40 dB Spectrum Bandwidth | −60 dB Spectrum Bandwidth | |
---|---|---|---|
5 | 1.466991 | 3.533 fT | 7.614 fT |
6 | 1.470202 | ||
7 | 1.466096 |
m | −40 dB Spectrum bandwidth | −60 dB Spectrum bandwidth | |
---|---|---|---|
5 | 1.744317 | 2.57 fT | 4.647 fT |
6 | 1.780325 | 2.61 fT | 3.39 fT |
7 | 1.860039 | 2.722 fT | 3.716 fT |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Xue, W.; Jia, P.; Makarov, S.B.; Li, B. Research on Spectrum Optimization Technology for a Wireless Communication System. Symmetry 2020, 12, 34. https://doi.org/10.3390/sym12010034
Liu M, Xue W, Jia P, Makarov SB, Li B. Research on Spectrum Optimization Technology for a Wireless Communication System. Symmetry. 2020; 12(1):34. https://doi.org/10.3390/sym12010034
Chicago/Turabian StyleLiu, Mingxin, Wei Xue, Peisong Jia, Sergey B. Makarov, and Beiming Li. 2020. "Research on Spectrum Optimization Technology for a Wireless Communication System" Symmetry 12, no. 1: 34. https://doi.org/10.3390/sym12010034
APA StyleLiu, M., Xue, W., Jia, P., Makarov, S. B., & Li, B. (2020). Research on Spectrum Optimization Technology for a Wireless Communication System. Symmetry, 12(1), 34. https://doi.org/10.3390/sym12010034