Two-Variable Quantum Integral Inequalities of Simpson-Type Based on Higher-Order Generalized Strongly Preinvex and Quasi-Preinvex Functions
Abstract
:1. Introduction
2. Formulations and Basic Facts
3. Auxiliary Result
4. Main Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jackson, F.H. On a q-definite integrals. Quart. J. Pure Appl. Math. 1910, 4, 193–203. [Google Scholar]
- Tariboon, J.; Ntouyas, S.K. Quantum integral inequalities on finite intervals. J. Inequal. Appl. 2014, 121, 13. [Google Scholar] [CrossRef] [Green Version]
- Tariboon, J.; Ntouyas, S.K. Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Differ. Equ. 2013, 282, 282–301. [Google Scholar] [CrossRef] [Green Version]
- Ernst, T. A Comprehensive Treatment of q-Calculus; Springer: Basel, Switzerland, 2012. [Google Scholar]
- Kac, V.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2003; p. 652. [Google Scholar]
- Gauchman, H. Integral inequalities in q–calculus. Comput. Math. Appl. 2004, 47, 281–300. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Awan, M.U.; Wu, S. Quantum integral inequalities of Simpson-type for strongly preinvex functions. Mathematics 2019, 7, 751. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Kalsoom, H.; Wu, S. Some new quantum Hermite-Hadamard-type estimates within a class of generalized (s,m)-preinvex functions. Symmetry 2019, 11, 1283. [Google Scholar] [CrossRef] [Green Version]
- Hanson, M.A. On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 1981, 80, 545–550. [Google Scholar] [CrossRef] [Green Version]
- Weir, T.; Mond, B. Preinvex functions in multi objective optimization. J. Math. Anal. Appl. 1986, 136, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Mohan, S.R.; Neogy, S.K. On invex sets and preinvex functions. J. Math. Anal. Appl. 1995, 189, 901–908. [Google Scholar] [CrossRef] [Green Version]
- Polyak, B.T. Existence theorems and convergence of minimizing sequences in extremum problems with restrictions. Soviet Math. Dokl. 1966, 7, 2–75. [Google Scholar]
- Karamardian, S. The nonlinear complementarity problems with applications, Part 2. J. Optim. Theory Appl. 1969, 4, 167–181. [Google Scholar] [CrossRef]
- Zu, D.L.; Marcotte, P. Co-coercivity and its role in the convergence of iterative schemes for solving variational inequalities. SIAM J. Optim. 1996, 6, 714–726. [Google Scholar]
- Nikodem, K.; Pales, Z.S. Characterizations of inner product spaces by strongly convex functions. Banach J. Math. Anal. 2011, 1, 83–87. [Google Scholar] [CrossRef]
- Qu, G.; Li, N. On the exponentially stability of primal-dual gradeint dynamics. IEEE Control Syst. Lett. 2019, 3, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Rashid, S.; Latif, M.A.; Hammouch, Z.; Chu, M.-Y. Fractional integral inequalities for strongly h-preinvex functions for a kth order differentiable functions. Symmetry 2019, 11, 1448. [Google Scholar] [CrossRef] [Green Version]
- Adamek, M. On a problem connected with strongly convex functions. Math. Inequal. Appl. 2016, 19, 1287–1293. [Google Scholar] [CrossRef] [Green Version]
- Paul, G.; Yao, D.D. Monotone Structure in Discrete Event Systems; Wiley Series in Probability and Statistics; Wiley-Interscience: New York, NY, USA, 1994; ISBN 978-0-471-58041-6. [Google Scholar]
- Angulo, H.; Gimenez, J.; Moeos, A.M.; Nikodem, K. On strongly h-convex functions. Ann. Funct. Anal. 2011, 2, 85–91. [Google Scholar] [CrossRef]
- Azcar, A.; Gimnez, J.; Nikodem, K.; Snchez, J.L. On strongly midconvex functions. Opuscula Math. 2011, 31, 15–26. [Google Scholar] [CrossRef]
- Lara, T.; Merentes, N.; Quintero, R.; Rosales, E. On strongly m-convex functions. Math. Aeterna 2015, 5, 521–535. [Google Scholar]
- Rashid, S.; Jarad, F.; Noor, M.A.; Kalsoom, H.; Chu, Y.-M. Inequalities by means of generalized proportional fractional integral operators with respect to another function. Mathematics 2010, 7, 1225. [Google Scholar] [CrossRef] [Green Version]
- Kalsoom, H.; Latif, M.A.; Junjua, M.U.D.; Hussain, S.; Shahzadi, G. Some (p,q)-estimates of Hermite–Hadamard-type inequalities for co-ordinated convex and quasi-convex functions. Mathematics 2019, 8, 683. [Google Scholar] [CrossRef] [Green Version]
- Kalsoom, H.; Wu, J.; Hussain, S.; Latif, M.A. Simpson’s type inequalities for co-ordinated convex functions on quantum calculus. Symmetry 2019, 11, 768. [Google Scholar] [CrossRef] [Green Version]
- Zafar, F.; Kalsoom, H.; Hussain, N. Some inequalities of Hermite-Hadamard type for n-times differentiable (ρ,m)-geometrically convex functions. J. Nonlinear Sci. Appl. 2015, 8, 201–217. [Google Scholar] [CrossRef] [Green Version]
- Kalsoom, H.; Hussain, S. Some Hermite-Hadamard type integral inequalities whose n-times differentiable functions are s-logarithmically convex functions. Punjab Univ. J. Math. 2019, 2019, 65–75. [Google Scholar]
- Alomari, M.; Darus, M.; Dragomir, S.S. New inequalities of Simpson’s type for s-convex functions with applications. RGMIA Res. Rep. Coll. 2009, 12, 1–18. [Google Scholar]
- Dragomir, S.S.; Agarwal, R.P.; Cerone, P. On Simpson’s inequality and applications. J. Ineq. Appl. 2000, 5, 533–579. [Google Scholar] [CrossRef] [Green Version]
- Hudzik, H.; Maligranda, L. Some remarks on s-convex functions. Aequ. Math. 1994, 48, 100–111. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Set, E.; Özdemir, M.E. On new inequalities of Simpson’s type for convex functions. Comput. Math. Appl. 2016, 60, 2191–2199. [Google Scholar] [CrossRef] [Green Version]
- Adil Khan, M.; Chu, Y.-M.; Kashuri, A.; Liko, R.; Ali, G. Conformable fractional integrals versions of Hermite-Hadamard inequalities and their generalizations. J. Funct. Spaces. 2018, 2018, 6928130. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.-Q.; Adil Khan, M.; Zaheer Ullah, S.; Chu, Y.-M. Integral inequalities involving strongly convex functions. J. Funct. Spaces. 2018, 2018, 6595921. [Google Scholar] [CrossRef]
- Adil Khan, M.; Iqbal, A.; Suleman, M.; Chu, Y.-M. Hermite–Hadamard type inequalities for fractional integrals via Green’s function. J. Inequal. Appl. 2018, 2018, 161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adil Khan, M.; Khurshid, Y.; Du, T.-S.; Chu, Y.-M. Generalization of Hermite-Hadamard type inequalities via conformable fractional integrals. J. Funct. Spaces. 2018, 2018, 5357463. [Google Scholar] [CrossRef]
- Zaheer Ullah, S.; Adil Khan, M.; Chu, Y.-M. A note on generalized convex functions. J. Inequal. Appl. 2019, 2019, 291. [Google Scholar] [CrossRef]
- Rashid, S.; Noor, M.A.; Noor, K.I.; Safdar, F.; Chu, Y.-M. Hermite-Hadamard type inequalities for the class of convex functions on time scale. Mathematics 2019, 7, 756. [Google Scholar] [CrossRef] [Green Version]
- Nie, D.; Rashid, S.; Akdemir, A.O.; Baleanu, D.; Liu, J.-B. On some new weighted inequalities for differentiable exponentially convex and exponentially quasi-convex functions with applications. Mathematics. 2019, 7, 727. [Google Scholar] [CrossRef] [Green Version]
- Rashid, S.; Noor, M.A.; Noor, K.I. Inequalities pertaining fractional approach through exponentially convex functions. Fractal Fract. 2019, 3, 37. [Google Scholar] [CrossRef] [Green Version]
- Rashid, S.; Noor, M.A.; Noor, K.I.; Akdemir, A.O. Some new generalizations for exponentially s-convex functions and inequalities via fractional operators. Fractal Fract. 2019, 3, 24. [Google Scholar] [CrossRef] [Green Version]
- Rashid, S.; Noor, M.A.; Noor, K.I. New Estimates for Exponentially Convex Functions via Conformable Fractional Operator. Fractal Fract. 2019, 3, 19. [Google Scholar] [CrossRef] [Green Version]
- Rashid, S.; Noor, M.A.; Noor, K.I. Some generalize Riemann-Liouville fractional estimates involving functions having exponentially convexity property. Punjab. Univ. J. Math. 2019, 51, 1–15. [Google Scholar]
- Rashid, S.; Noor, M.A.; Noor, K.I. Fractional exponentially m-convex functions and inequalities. Inter. J. Anal. Appl. 2019, 17, 464–478. [Google Scholar]
- Rashid, S.; Abdeljawad, T.; Jarad, F.; Noor, M.A. Some estimates for generalized Riemann-Liouville fractional integrals of exponentially convex functions and their applications. Mathematics 2019, 7, 807. [Google Scholar] [CrossRef] [Green Version]
- Rashid, S.; Akdemir, A.O.; Jarad, F.; Noor, M.A.; Noor, K.I. Simpson’s type integral inequalities for k-fractional integrals and their applications. AIMS. Math. 2019, 4, 1087–1100. [Google Scholar] [CrossRef]
- Craven, B.D. Duality for generalized convex fractional programs. In Generalized Convexity in Optimization and Economics; Schaible, S., Ziemba, T., Eds.; Academic Press: San Diego, CA, USA, 1981; pp. 473–489. [Google Scholar]
- Noor, M.A.; Noor, K.I. Some characterizations of strongly preinvex functions. J. Math. Anal. Appl. 2006, 316, 697–706. [Google Scholar] [CrossRef] [Green Version]
- Bynum, W.L. Weak parallelogram laws for Banach spaces. Can. Math. Bull. 1976, 19, 269–275. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalsoom, H.; Rashid, S.; Idrees, M.; Chu, Y.-M.; Baleanu, D. Two-Variable Quantum Integral Inequalities of Simpson-Type Based on Higher-Order Generalized Strongly Preinvex and Quasi-Preinvex Functions. Symmetry 2020, 12, 51. https://doi.org/10.3390/sym12010051
Kalsoom H, Rashid S, Idrees M, Chu Y-M, Baleanu D. Two-Variable Quantum Integral Inequalities of Simpson-Type Based on Higher-Order Generalized Strongly Preinvex and Quasi-Preinvex Functions. Symmetry. 2020; 12(1):51. https://doi.org/10.3390/sym12010051
Chicago/Turabian StyleKalsoom, Humaira, Saima Rashid, Muhammad Idrees, Yu-Ming Chu, and Dumitru Baleanu. 2020. "Two-Variable Quantum Integral Inequalities of Simpson-Type Based on Higher-Order Generalized Strongly Preinvex and Quasi-Preinvex Functions" Symmetry 12, no. 1: 51. https://doi.org/10.3390/sym12010051
APA StyleKalsoom, H., Rashid, S., Idrees, M., Chu, Y. -M., & Baleanu, D. (2020). Two-Variable Quantum Integral Inequalities of Simpson-Type Based on Higher-Order Generalized Strongly Preinvex and Quasi-Preinvex Functions. Symmetry, 12(1), 51. https://doi.org/10.3390/sym12010051