Supersymmetry of Relativistic Hamiltonians for Arbitrary Spin
Abstract
:1. Introduction
2. Relativistic Hamiltonians for Arbitrary Spin
3. Supersymmetric Relativistic Hamiltonians for Arbitrary Spin
4. Examples
4.1. The Klein–Gordon Hamiltonian with Magnetic Field
4.2. The Dirac Hamiltonian with Magnetic Field
4.3. The Spin-1 Hamiltonian with Magnetic Field
5. The Resolvent of Supersymmetric Relativistic Arbitrary-Spin Hamiltonians
5.1. The Resolvent of the Klein–Gordon Hamiltonian with Magnetic Field
5.2. The Resolvent of the Dirac Particle in a Magnetic Field
5.3. The Resolvent of a Vector Boson in a Magnetic Field
6. Summary and Outlook
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Some Useful Relations for the Spin-One Case
References
- Klein, O. Quantentheorie und fünfdimensionale Relativitätstheorie. Z. Phys. 1926, 37, 895–906. [Google Scholar] [CrossRef]
- Gordon, W. Der Comptoneffekt nach der Schrödingerschen Theorie. Z. Phys. 1926, 40, 117–133. [Google Scholar] [CrossRef]
- Dirac, P.A.M. The Quantum Theory of the Electron. Proc. R. Soc. A 1928, 117, 610–624. [Google Scholar]
- Dirac, P.A.M. The Quantum Theory of the Electron Part II. Proc. R. Soc. A 1928, 118, 351–361. [Google Scholar]
- Proca, A. Sur la théorie ondulatoire des électrons positifs et négatifs. J. Phys. Radium 1936, 7, 347–353. [Google Scholar] [CrossRef]
- Dirac, P.A.M. Relativistic Wave Equations. Proc. R. Soc. A 1936, 155, 447–459. [Google Scholar]
- Fierz, M. Über die relativistische Theorie kräftefreier Teilchen mit beliebigem Spin. Helv. Phys. Acta 1939, 12, 3–37. [Google Scholar]
- Fierz, M.; Pauli, W. On Relativistic Wave Equations for Particles of Arbitrary Spin in an Electromagnetic Field. Proc. R. Soc. A 1939, 173, 211–232. [Google Scholar]
- Bhabha, H.J. Relativistic wave equations for the elementary particles. Rev. Mod. Phys. 1945, 17, 200–216. [Google Scholar] [CrossRef]
- Bargmann, V.; Wigner, E.P. Group Theoretical Discussion of Relativistic Wave Equations. Proc. Natl. Acad. Sci. USA 1948, 34, 211–223. [Google Scholar] [CrossRef] [Green Version]
- Foldy, L.L.; Wouthuysen, S.A. On the Dirac Theory of Spin 1/2 Particles and Its Non-Relativistic Limit. Phys. Rev. 1950, 78, 29–36. [Google Scholar] [CrossRef]
- Foldy, L.L. Synthesis of Covariant Particle Equations. Phys. Rev. 1956, 102, 568–581. [Google Scholar] [CrossRef]
- Feshbach, H.; Villars, F. Elementary Relativistic Wave Mechanics of Spin 0 and Spin 1/2 Particles. Rev. Mod. Phys. 1958, 30, 24–45. [Google Scholar] [CrossRef]
- Duffin, R.J. On The Characteristic Matrices of Covariant Systems. Phys. Rev. 1938, 54, 1114. [Google Scholar] [CrossRef]
- Kemmer, N. The particle aspect of meson theory. Proc. R. Soc. A 1939, 173, 91–116. [Google Scholar]
- Yukawa, H.; Sakata, S.; Taketani, M. On the Interaction of Elementary Particles. III. Proc. Phys.-Math. Soc. Jpn. 1938, 20, 319–340. [Google Scholar] [CrossRef] [Green Version]
- Sakata, S.; Taketani, M. On the Wave Equation of Meson. Proc. Phys.-Math. Soc. Jpn. 1940, 22, 757–770. [Google Scholar]
- Corben, H.C.; Schwinger, J. The Electromagnetic Properties of Mesotrons. Phys. Rev. 1940, 58, 953–968. [Google Scholar] [CrossRef]
- Schrödinger, E. The wave equation for spin 1 in Hamiltonian form. Proc. R. Soc. A 1955, 229, 39–43. [Google Scholar]
- Silenko, A. Exact form of the exponential Foldy-Wouthuysen transformation operator for an arbitrary-spin particle. Phys. Rev. A 2016, 94, 032104. [Google Scholar] [CrossRef] [Green Version]
- Simulik, V.M. Relativistic Equations for arbitray Spin, especially for the Spin s = 2. Ukr. J. Phys. 2019, 64, 1064–1068. [Google Scholar] [CrossRef]
- Nicolai, H. Supersymmetry and spin systems. J. Phys. A 1976, 9, 1497–1506. [Google Scholar] [CrossRef] [Green Version]
- Witten, E. Dynamical breaking of supersymmetry. Nucl. Phys. B 1981, 188, 513–554. [Google Scholar] [CrossRef]
- Cooper, F.; Khare, A.; Sukhatme, U. Supersymmetry and quantum mechanics. Phys. Rep. 1995, 251, 267–385. [Google Scholar] [CrossRef] [Green Version]
- Junker, G. Supersymmetric Methods in Quantum and Statistical Physics, 1st ed.; Springer: Berlin, Germany, 1996. [Google Scholar]
- Jackiw, R. Fractional charge and zero modes for planar systems in a magnetic field. Phys. Rev. D 1984, 29, 2375–2377. [Google Scholar] [CrossRef]
- Ui, H. Supersymmetric quantum mechanics and fermion in a gauge field of (1 + 2) dimensions. Prog. Theor. Phys. 1984, 72, 192–193. [Google Scholar] [CrossRef]
- Sarma, S.D.; Adam, S.; Hwang, E.H.; Rossi, E. Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 2011, 83, 407–470. [Google Scholar] [CrossRef] [Green Version]
- Thaller, B. The Dirac Equation; Springer: Berlin, Germany, 1992. [Google Scholar]
- Znoil, M. Relativistic supersymmetric quantum mechanics based on Klein-Gordon equation. J. Phys. A 2004, 37, 9557. [Google Scholar] [CrossRef] [Green Version]
- Junker, G. Supersymmetric Methods in Quantum, Statistical and Solid State Physics, Enlarged and Revised Edition; IOP Publishing: Bristol, UK, 2019. [Google Scholar]
- Junker, G.; Inomata, A. Path integral and spectral representations for supersymmetric Dirac-Hamiltonians. J. Math. Phys. 2018, 59, 052301. [Google Scholar] [CrossRef] [Green Version]
- Witten, E. Constraints on supersymmetry breaking. Nucl. Phys. B 1982, 202, 253–316. [Google Scholar] [CrossRef]
- Fock, V. Bemerkung zur Quantelung des harmonischen Oszillators im Magnetfeld. Z. Phys. 1928, 47, 446–448. [Google Scholar] [CrossRef]
- Landau, L. Diamagnetismus der Metalle. Z. Phys. 1930, 64, 629–637. [Google Scholar] [CrossRef]
- Aharonov, Y.; Casher, A. Ground state of a spin-12 charged particle in a two-dimensional magnetic field. Phys. Rev. A 1978, 19, 2461–2462. [Google Scholar] [CrossRef]
- Rabi, I.I. Das freie Elektron im homogenen Magnetfeld nach der Diracschen Theorie. Z. Phys. 1928, 49, 507–511. [Google Scholar] [CrossRef]
- Young, J.A.; Bludman, S.A. Electromagnetic Properties of a Charged Vector Meson. Phys. Rev. 1963, 131, 2326–2334. [Google Scholar] [CrossRef] [Green Version]
- Krase, L.D.; Lu, P.; Good, R.H., Jr. Stationary States of a Spin-1 Particle in a Constant Magnetic Field. Phys. Rev. D 1971, 3, 1275–12798. [Google Scholar] [CrossRef]
- Tsai, W.-Y.; Yildiz, A. Motion of Charged Particles in a Homogeneous Magnetic Field. Phys. Rev. D 1971, 4, 3643–3648. [Google Scholar] [CrossRef]
- Goldman, T.; Tsai, W.-Y. Motion of Charged Particles in a Homogeneous Magnetic Field II. Phys. Rev. D 1971, 4, 3648–3651. [Google Scholar] [CrossRef]
- Daicic, J.; Frankel, N.E. Relativistic spin-1 bosons in a magnetic field. J. Phys. A Math. Gen. 1993, 26, 1397–1408. [Google Scholar] [CrossRef]
- Silenko, A.J. High precision description and new properties of a spin-1 particle in a magnetic field. Phys. Rev. D 2014, 89, 121701. [Google Scholar] [CrossRef] [Green Version]
- Junker, G. Supersymmetric quantum mechanics requires g = 2 for vector bosons. Eur. Phys. Lett. 2020, 130, 30003. [Google Scholar] [CrossRef]
- Weaver, D.L. Application of a single-particle-theory calculation of g − 2 to spin one. Phys. Rev. D 1976, 14, 2824–2825. [Google Scholar] [CrossRef]
- Guertin, R.F. Relativistic Hamiltonian Equations for Any Spin. Ann. Phys. 1974, 88, 504–553. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Junker, G. Supersymmetry of Relativistic Hamiltonians for Arbitrary Spin. Symmetry 2020, 12, 1590. https://doi.org/10.3390/sym12101590
Junker G. Supersymmetry of Relativistic Hamiltonians for Arbitrary Spin. Symmetry. 2020; 12(10):1590. https://doi.org/10.3390/sym12101590
Chicago/Turabian StyleJunker, Georg. 2020. "Supersymmetry of Relativistic Hamiltonians for Arbitrary Spin" Symmetry 12, no. 10: 1590. https://doi.org/10.3390/sym12101590
APA StyleJunker, G. (2020). Supersymmetry of Relativistic Hamiltonians for Arbitrary Spin. Symmetry, 12(10), 1590. https://doi.org/10.3390/sym12101590