Internet of Things and Its Applications: A Comprehensive Survey
Abstract
:1. Introduction
2. Methodology
2.1. Sources
2.2. Selection
2.3. Extraction
3. Background
- IoT Edge Devices form the smart IoT actuator since they are able to conduct some processing themselves;
- IoT Sensors are connected to the cloud, where they can transmit and receive the data;
- Device Provision helps to connect a large number of devices to be registered;
- IoT Gateway/Framework proves a cloud hub to the IoT devices and provides command, management, and control of the devices;
- Stream Processing analyzes complex execution using time windowing ductions, stream aggregation, and external source combing;
- Machine Learning allows the algorithms to be predicted and executed using extreme data. It also analyzes and enables predictive maintenance, according to different scenarios;
- Reporting Tools help to hold and store the data, while providing the necessary tools for batch processing;
- User Management can restrict and permit which users or groups are authorized to perform an action on the device. The process is done by using the capacities of the application of each user.
- CoAP: This is used in an IoT communication load susceptible to performance deprivation that occurs from traffic congestion. It is a web transfer protocol mainly developed for limited devices with a restricted processing memory and power, usually operating in low bit rate environments [64]. This Hypertext Transfer Protocol (HTTP) is similar to a web transfer protocol that is capable of extending the Representational State Transfer (RST) architecture to Low-Power Wireless Personal Area Networks (LoWPANs) [65]. Furthermore, the Low-Power Wide-Area Network (LoRaWAN) protocol provides the Medium Access Control (MAC) mechanism, which helps to enable communication between various devices and network gateways [66]. This protocol is based on a star topology and has several advantages in IoT applications, such as its low cost, low power, secure nature, and ease of deployment [67]. It follows the RST architecture and comprises a 4-byte header-only, including the User Datagram Protocol (UDP), as a default fundamental transport protocol. Moreover, it provides reliability through the retransmission timeout mechanism [68]. As CoAP works on top of UDP, it presumes possible end-to-end trustworthiness and primary control of congestion. This protocol operates in the application layer and is in charge of formatting the data formatting handshaking connection [69]. To communicate data, CoAP provides four types of messages, including the Confirmable message, the Non-Confirmable message, the Acknowledgement message, and the Reset message. All in all, CoAP operates following a request/response approach [70];
- MQTT: This is used for lightweight M2M communications. It acts as an asynchronous protocol that follows the publish/subscribe protocol. The main goal of this protocol is to connect implanted devices and networks to middleware and applications. The advantages of MQTT are its ability to ensure routing in small cases, the fact that it is economical, its low memory, and its low power devices for susceptible and low bandwidth networks [71]. This protocol is extremely lightweight, which makes it suitable for M2M, WSN, and IoT [72]. It allows the transfer of telemetry-style data from devices to the server as messages, along with high latency or constrained networks [73];
- XMPP: This is mostly used for message exchange. It follows the publish/subscribe approach, which is more appropriate for IoT, contrary to the architecture of the CoAP request/response. Moreover, it represents an early protocol endorsed across the internet, regardless of relatively newer protocols, i.e., MQTT [74]. It is based on the Instant Messaging/Presence Protocol (IETF standards) that is used for multi-party chatting, voice and video calling, and telepresence [75]. The main benefits of XMPP consist of it being a secure protocol and the fact that it permits the addition of new applications on top of the core protocols [76];
- AMQP: This was developed for the financial industry. It is characterized by its capability in orientating messages, queuing, switching, security, reliability, and privacy [77]. Similar to XMPP, the AMQP protocol follows the same architecture of the publish/subscribe approach. The principal benefit of using AMQP consists of the store-and-forward element that guarantees reliability and trustworthiness, although it can involve possible network disruptions [78]. This protocol maintains reliable communication through message delivery and ensures delivery primitives involving at-most-once, at-least-once, and exactly once. It needs a trustworthy transport protocol that explains its use of the Transmission Control Protocol (TCP) for message exchange [79].
4. Related Work
5. IoT Applications
5.1. Healthcare Applications
5.2. Environment Applications
5.3. Smart City Applications
5.4. Commercial Applications
5.5. Industrial Applications
5.6. Infrastructural Applications
6. Discussion
7. IoT Challenges
8. IoT and Next Generation Protocol
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Holma, H.; Toskala, A.; Nakamura, T. 5G Technology: 3GPP New Radio; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Faizan, Q. Enhancing QOS Performance of the 5G Network by Characterizing Mm-Wave Channel and Optimizing Interference Cancellation Scheme/Faizan Qamar. Ph.D. Thesis, University of Malaya, Kuala Lumpur, Malaysia, 2019. [Google Scholar]
- Polese, M.; Giordani, M.; Zugno, T.; Roy, A.; Goyal, S.; Castor, D.; Zorzi, M. Integrated Access and Backhaul in 5G mmWave Networks: Potential and Challenges. IEEE Commun. Mag. 2020, 58, 62–68. [Google Scholar] [CrossRef]
- Qamar, F.; Siddiqui, M.H.S.; Hindia, M.N.; Dimyati, K.; Abd Rahman, T.; Talip, M.S.A. Propagation Channel Measurement at 38 GHz for 5G mm-wave communication Network. In Proceedings of the 2018 IEEE Student Conference on Research and Development (SCOReD), Selangor, Malaysia, 26–28 November 2018; pp. 1–6. [Google Scholar]
- Hindia, M.N.; Qamar, F.; Ojukwu, H.; Dimyati, K.; Al-Samman, A.M.; Amiri, I.S. On Platform to Enable the Cognitive Radio Over 5G Networks. In Wireless Personal Communications; Springer: New York, NY, USA, 2020; pp. 1241–1262. [Google Scholar]
- Bogale, T.E.; Le, L.B. Massive MIMO and mmWave for 5G wireless HetNet: Potential benefits and challenges. IEEE Veh. Technol. Mag. 2016, 11, 64–75. [Google Scholar] [CrossRef]
- Mohamed, E.M.; Elhalawany, B.M.; Khallaf, H.S.; Zareei, M.; Zeb, A.; Abdelghany, M.A. Relay Probing for Millimeter Wave Multi-Hop D2D Networks. IEEE Access 2020, 8, 30560–30574. [Google Scholar] [CrossRef]
- Hindia, M.N.; Qamar, F.; Abbas, T.; Dimyati, K.; Abu Talip, M.S.; Amiri, I.S. Interference cancelation for high-density fifth-generation relaying network using stochastic geometrical approach. Int. J. Distrib. Sens. Netw. 2019, 15, 1550147719855879. [Google Scholar] [CrossRef] [Green Version]
- Dahnil, D.P.; Hassan, R. Wireless Sensor Networks: A framework for community and educational gardens. Adv. Sci. Lett. 2018, 24, 1153–1157. [Google Scholar] [CrossRef]
- Tilwari, V.; Hindia, M.N.; Dimyati, K.; Qamar, F.; Talip, A.; Sofian, M. Contention Window and Residual Battery Aware Multipath Routing Schemes in Mobile Ad-hoc Networks. Int. J. Technol. 2019, 10, 1376–1384. [Google Scholar] [CrossRef] [Green Version]
- Amiri, I.; Dong, D.S.; Pokhrel, Y.M.; Gachhadar, A.; Maharjan, R.K.; Qamar, F. Resource Tuned Optimal Random Network Coding for Single Hop Multicast future 5G Networks. Int. J. Electron. Telecommun. 2019, 65, 463–469. [Google Scholar]
- Li, J.; Lei, G.; Manogaran, G.; Mastorakis, G.; Mavromoustakis, C.X. D2D communication mode selection and resource optimization algorithm with optimal throughput in 5G network. IEEE Access 2019, 7, 25263–25273. [Google Scholar] [CrossRef]
- Qamar, F.; Dimyati, K.; Hindia, M.N.; Noordin, K.A.; Amiri, I.S. A stochastically geometrical poisson point process approach for the future 5G D2D enabled cooperative cellular network. IEEE Access 2019, 7, 60465–60485. [Google Scholar] [CrossRef]
- Elijah, O.; Rahman, T.A.; Orikumhi, I.; Leow, C.Y.; Hindia, M.N. An Overview of Internet of Things (IoT) and Data Analytics in Agriculture: Benefits and Challenges. IEEE Internet Things J. 2018, 5, 3758–3773. [Google Scholar] [CrossRef]
- Aman, A.H.M.; Yadegaridehkordi, E.; Attarbashi, Z.S.; Hassan, R.; Park, Y.J. A Survey on Trend and Classification of Internet of Things Reviews. IEEE Access 2020, 8, 111763–111782. [Google Scholar] [CrossRef]
- Udeshi, D.; Qamar, F. Quality Analysis Of Epon Network For Uplink and Downlink Design. Asian J. Eng. Sci. Technol. 2014, 4, 78–83. [Google Scholar]
- Gachhadar, A.; Qamar, F.; Dong, D.S.; Majed, M.B.; Hanafi, E.; Amiri, I.S. Traffic Offloading in 5G Heterogeneous Networks using Rank based Network Selection. J. Eng. Sci. Technol. Rev. 2019, 12, 9–16. [Google Scholar] [CrossRef]
- Hashem, I.A.T.; Yaqoob, I.; Anuar, N.B.; Mokhtar, S.; Gani, A.; Khan, S.U. The rise of “big data” on cloud computing: Review and open research issues. Inf. Syst. 2015, 47, 98–115. [Google Scholar] [CrossRef]
- Gachhadar, A.; Hindia, M.N.; Qamar, F.; Siddiqui, M.H.S.; Noordin, K.A.; Amiri, I.S. Modified genetic algorithm based power allocation scheme for amplify-and-forward cooperative relay network. Comput. Electr. Eng. 2018, 69, 628–641. [Google Scholar] [CrossRef]
- Hassan, R.; Aman, A.H.M.; Latiff, L.A. Framework for Handover process using Visible Light Communications in 5G. In Proceedings of the 2019 Symposium on Future Telecommunication Technologies (SOFTT), Kuala Lumpur, Malaysia, 18–19 November 2019; pp. 1–4. [Google Scholar]
- Le, A.T.; Huang, X.; Guo, Y.J. Beam-Based Analog Self-Interference Cancellation in Full-Duplex MIMO Systems. IEEE Trans. Wirel. Commun. 2020, 19, 2460–2471. [Google Scholar] [CrossRef] [Green Version]
- Saizan, Z.; Singh, D. Cyber security awareness among social media users: Case study in German-Malaysian Institute (GMI). Asia Pac. J. Inf. Technol. Multimed. 2018, 7, 111–127. [Google Scholar] [CrossRef]
- Muniyandi, R.C.; Qamar, F.; Jasim, A.N. Genetic Optimized Location Aided Routing Protocol for VANET Based on Rectangular Estimation of Position. Appl. Sci. 2020, 10, 5759. [Google Scholar] [CrossRef]
- Mamode, M.I.S.; Fowdur, T.P. Survey of Scheduling Schemes in 5G Mobile Communication Systems. J. Electr. Eng. Electron. Control Comput. Sci. 2020, 6, 21–30. [Google Scholar]
- Giordani, M.; Zorzi, M. Satellite communication at millimeter waves: A key enabler of the 6G era. In Proceedings of the 2020 International Conference on Computing, Networking and Communications (ICNC), Big Island, HI, USA, 17–20 February 2020; pp. 383–388. [Google Scholar]
- Letaief, K.B.; Chen, W.; Shi, Y.; Zhang, J.; Zhang, Y.J.A. The roadmap to 6G: AI empowered wireless networks. IEEE Commun. Mag. 2019, 57, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Jameel, F.; Sharma, N.; Khan, M.A.; Khan, I.; Alam, M.M.; Mastorakis, G.; Mavromoustakis, C.X. Machine learning techniques for wireless-powered ambient backscatter communications: Enabling intelligent IoT networks in 6G era. In Convergence of Artificial Intelligence and the Internet of Things; Springer: Cham, Switzerland, 2020; pp. 187–211. [Google Scholar]
- Kato, N.; Mao, B.; Tang, F.; Kawamoto, Y.; Liu, J. Ten Challenges in Advancing Machine Learning Technologies toward 6G. IEEE Wirel. Commun. 2020, 27, 96–103. Available online: https://ieeexplore.ieee.org/document/9061001 (accessed on 1 September 2020). [CrossRef]
- Hewa, T.; Gür, G.; Kalla, A.; Ylianttila, M.; Bracken, A.; Liyanage, M. The Role of Blockchain in 6G: Challenges, Opportunities and Research Directions. In Proceedings of the 2020 2nd 6G Wireless Summit (6G SUMMIT), Levi, Finland, 17–20 March 2020; pp. 1–5. [Google Scholar]
- Liu, Y.; Yuan, X.; Xiong, Z.; Kang, J.; Wang, X.; Niyato, D. Federated Learning for 6G Communications: Challenges, Methods, and Future Directions. arXiv 2020, arXiv:2006.02931. [Google Scholar]
- Hindia, M.N.; Qamar, F.; Majed, M.B.; Rahman, T.A.; Amiri, I.S. Enabling remote-control for the power sub-stations over LTE-A networks. Telecommun. Syst. 2019, 70, 37–53. [Google Scholar] [CrossRef]
- Qamar, F.; Siddiqui, M.U.A.; Hindia, M.; Hassan, R.; Nguyen, Q.N. Issues, Challenges, and Research Trends in Spectrum Management: A Comprehensive Overview and New Vision for Designing 6G Networks. Electronics 2020, 9, 1416. [Google Scholar] [CrossRef]
- Mahmood, N.H.; Alves, H.; López, O.A.; Shehab, M.; Osorio, D.P.M.; Latva-Aho, M. Six key features of machine type communication in 6G. In Proceedings of the 2020 2nd 6G Wireless Summit (6G SUMMIT), Levi, Finland, 17–20 March 2020; pp. 1–5. [Google Scholar]
- Leloglu, E. A review of security concerns in Internet of Things. J. Comput. Commun. 2016, 5, 121–136. [Google Scholar] [CrossRef] [Green Version]
- Mohd Zaki, I.; Rosilah, H. The Implementation of Internet of Things using Test Bed in the UKMnet Environment. Asia Pac. J. Inf. Technol. Multimed. 2019, 8, 1–17. [Google Scholar]
- Hassan, R.; Nori, S.S.; Othman, N.E. The improvement of the protection for 6LoWPAN in IoT through non-causal hash function scheme. In Proceedings of the 2018 15th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Chiang Rai, Thailand, 18–21 July 2018; pp. 600–603. [Google Scholar]
- Whitmore, A.; Agarwal, A.; Da Xu, L. The Internet of Things—A survey of topics and trends. Inf. Syst. Front. 2015, 17, 261–274. [Google Scholar] [CrossRef]
- Ali, Z.M.; Arshad, M.A.B.M.; Bakar, M.A. POLIoT: Internet Of Things Framework In Managing Network Threats At Metro Polytechnic Tasek Gelugor. In Proceedings of the 2018 Cyber Resilience Conference (CRC), Putrajaya, Malaysia, 13–15 November 2018; pp. 1–4. [Google Scholar]
- Jain, P.; Adrangi, F.; Venkatachalam, M. Cellular IoT Network Architecture. Google Patents US 10,623,942 B2, 14 April 2020. [Google Scholar]
- Korade, S.; Kotak, V.; Durafe, A. A review paper on internet of things (IoT) and its applications. Int. Res. J. Eng. Technol. 2019, 6, 1623–1630. [Google Scholar]
- Wu, F.; Wu, T.; Yuce, M.R. An internet-of-things (IoT) network system for connected safety and health monitoring applications. Sensors 2019, 19, 21. [Google Scholar] [CrossRef] [Green Version]
- Pungus, S.R.; Yahaya, J.; Deraman, A.; Bakar, N.H.B. A data modeling conceptual framework for ubiquitous computing based on context awareness. Int. J. Electr. Comput. Eng. 2019, 9, 5495–5501. [Google Scholar] [CrossRef]
- Alsharif, M.H.; Nordin, R.; Abdullah, N.F.; Kelechi, A.H. How to make key 5G wireless technologies environmental friendly: A review. Trans. Emerg. Telecommun. Technol. 2018, 29, e3254. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, X. Vehicle communication network in intelligent transportation system based on internet of things. Comput. Commun. 2020, 160, 799–806. [Google Scholar] [CrossRef]
- Udoh, I.S.; Kotonya, G. Developing IoT applications: Challenges and frameworks. IET Cyber Phys. Syst. Theory Appl. 2018, 3, 65–72. [Google Scholar] [CrossRef]
- Afzal, B.; Umair, M.; Shah, G.A.; Ahmed, E. Enabling IoT platforms for social IoT applications: Vision, feature mapping, and challenges. Future Gener. Comput. Syst. 2019, 92, 718–731. [Google Scholar] [CrossRef]
- Mekki, K.; Bajic, E.; Chaxel, F.; Meyer, F. A comparative study of LPWAN technologies for large-scale IoT deployment. ICT Express 2019, 5, 1–7. [Google Scholar] [CrossRef]
- Hassan, W.H. Current research on Internet of Things (IoT) security: A survey. Comput. Netw. 2019, 148, 283–294. [Google Scholar]
- Raeespour, A.K.; Patel, A.M. Design and Evaluation of a Virtual Private Network Architecture for Collaborating Specialist Users. Asia Pac. J. Inf. Technol. Multimed. 2016, 5, 13–50. [Google Scholar] [CrossRef]
- Stackowiak, R. Azure IoT Solutions Overview. In Azure Internet of Things Revealed; Springer: Berkeley, CA, USA, 2019; pp. 29–54. [Google Scholar]
- Mojib, G.; Aman, A.H.M.; Khalaf, M.; Hassan, R. Simulation analysis for QoS in Internet Of Things wireless network. 3C Tecnol. 2019, 2019, 77–83. [Google Scholar] [CrossRef]
- Almeida, R.B.; Junes, V.R.C.; da Silva Machado, R.; da Rosa, D.Y.L.; Donato, L.M.; Yamin, A.C.; Pernas, A.M. A distributed event-driven architectural model based on situational awareness applied on Internet of Things. Inf. Softw. Technol. 2019, 111, 144–158. [Google Scholar] [CrossRef]
- Hu, B.; Guan, Z.H.; Chen, G.; Shen, X. A distributed hybrid event-time-driven scheme for optimization over sensor networks. IEEE Trans. Ind. Electron. 2018, 66, 7199–7208. [Google Scholar] [CrossRef]
- Windley, P.J. API Access Control with OAuth: Coordinating interactions with the Internet of Things. IEEE Consum. Electron. Mag. 2015, 4, 52–58. [Google Scholar] [CrossRef]
- Johnson, D.; Ketel, M. IoT: Application Protocols and Security. Int. J. Comput. Netw. Inf. Secur. 2019, 11, 1–8. [Google Scholar] [CrossRef]
- Kambourakis, G.; Kolias, C.; Geneiatakis, D.; Karopoulos, G.; Makrakis, G.M.; Kounelis, I. A State-of-the-Art Review on the Security of Mainstream IoT Wireless PAN Protocol Stacks. Symmetry 2020, 12, 579. [Google Scholar] [CrossRef] [Green Version]
- Sudarshan, A.; Dirisam, S.; Shetty, J.; NS, G.R.S. Review of Protocols used in Enterprise Networks. Int. J. Eng. Res. Technol. 2019, 8, 53–56. [Google Scholar]
- Deebak, B.D.; Al-Turjman, F. A hybrid secure routing and monitoring mechanism in IoT-based wireless sensor networks. Ad Hoc Netw. 2020, 97, 102022. [Google Scholar]
- Malathy, S.; Porkodi, V.; Sampathkumar, A.; Hindia, M.N.; Dimyati, K.; Tilwari, V.; Qamar, F.; Amiri, I.S. An optimal network coding based backpressure routing approach for massive IoT network. Wirel. Netw. 2020, 1–18. [Google Scholar] [CrossRef]
- Dohare, A.; Tulika; Mallikarjuna, B. Data Collection in Wireless Sensor Networks Using Prediction Method. J. Adv. Res. Dyn. Control Syst. 2019, 11, 815–820. [Google Scholar] [CrossRef]
- Martin, T.; Geneiatakis, D.; Kounelis, I.; Kerckhof, S.; Fovino, I.N. Towards a Formal IoT Security Model. Symmetry 2020, 12, 1305. [Google Scholar] [CrossRef]
- Popescu, C.R.G.; Popescu, G.N. Risks of cyber attacks on financial audit activity. Audit Financ. J. 2018, 16, 140–147. [Google Scholar] [CrossRef]
- Bahashwan, A.A.O.; Manickam, S. A brief review of messaging protocol standards for internet of things (IoT). J. Cyber Secur. Mobil. 2019, 8, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Hassan, R.; Jubair, A.M.; Azmi, K.; Bakar, A. Adaptive congestion control mechanism in CoAP application protocol for internet of things (IoT). In Proceedings of the 2016 International Conference on Signal Processing and Communication (ICSC), Noida, India, 26–28 December 2016; pp. 121–125. [Google Scholar]
- Tukade, T.M.; Banakar, R. Data transfer protocols in IoT—An overview. Int. J. Pure Appl. Math. 2018, 118, 121–138. [Google Scholar]
- Haxhibeqiri, J.; De Poorter, E.; Moerman, I.; Hoebeke, J. A survey of LoRaWAN for IoT: From technology to application. Sensors 2018, 18, 3995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khutsoane, O.; Isong, B.; Abu-Mahfouz, A.M. IoT devices and applications based on LoRa/LoRaWAN. In Proceedings of the IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017; pp. 6107–6112. [Google Scholar]
- Järvinen, I.; Daniel, L.; Kojo, M. Experimental evaluation of alternative congestion control algorithms for Constrained Application Protocol (CoAP). In Proceedings of the 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), Milan, Italy, 14–16 December 2015; pp. 453–458. [Google Scholar]
- Bhattacharjya, A.; Zhong, X.; Wang, J.; Li, X. CoAP—Application layer connection-less lightweight protocol for the Internet of Things (IoT) and CoAP-IPSEC Security with DTLS Supporting CoAP. In Digital Twin Technologies and Smart Cities; Springer: Cham, Switzerland, 2020; pp. 151–175. [Google Scholar]
- Akpakwu, G.A.; Hancke, G.P.; Abu-Mahfouz, A.M. CACC: Context-aware congestion control approach for lightweight CoAP/UDP-based Internet of Things traffic. Trans. Emerg. Telecommun. Technol. 2020, 31, e3822. [Google Scholar] [CrossRef]
- Soni, D.; Makwana, A. A survey on mqtt: A protocol of internet of things (iot). In Proceedings of the International Conference On Telecommunication, Power Analysis And Computing Techniques (ICTPACT-2017), Chennai, India, 4–8 April 2017. [Google Scholar]
- Luzuriaga, J.E.; Cano, J.C.; Calafate, C.; Manzoni, P.; Perez, M.; Boronat, P. Handling mobility in IoT applications using the MQTT protocol. In Proceedings of the 2015 Internet Technologies and Applications (ITA), Wales, UK, 8–11 September 2015; pp. 245–250. [Google Scholar]
- Hwang, H.C.; Park, J.; Shon, J.G. Design and implementation of a reliable message transmission system based on MQTT protocol in IoT. Wirel. Pers. Commun. 2016, 91, 1765–1777. [Google Scholar] [CrossRef]
- Chien, H.Y.; Chen, Y.J.; Qiu, G.H.; Liao, J.F.; Hung, R.W.; Lin, P.C.; Kou, X.A.; Chiang, M.L.; Su, C. A MQTT-API-compatible IoT security-enhanced platform. Int. J. Sens. Netw. 2020, 32, 54–68. [Google Scholar] [CrossRef]
- Chen, Y.; Kunz, T. Performance evaluation of IoT protocols under a constrained wireless access network. In Proceedings of the 2016 International Conference on Selected Topics in Mobile & Wireless Networking (MoWNeT), Cairo, Egypt, 11–13 April 2016; pp. 1–7. [Google Scholar]
- Joe, M.M.; Ramakrishnan, B. Review of vehicular ad hoc network communication models including WVANET (Web VANET) model and WVANET future research directions. Wirel. Netw. 2016, 22, 2369–2386. [Google Scholar] [CrossRef]
- Yassein, M.B.; Shatnawi, M.Q. Application layer protocols for the Internet of Things: A survey. In Proceedings of the 2016 International Conference on Engineering & MIS (ICEMIS), Agadir, Morocco, 22–24 September 2016; pp. 1–4. [Google Scholar]
- Karagiannis, V.; Chatzimisios, P.; Vazquez-Gallego, F.; Alonso-Zarate, J. A survey on application layer protocols for the internet of things. Trans. IoT Cloud Comput. 2015, 3, 11–17. [Google Scholar]
- Dizdarević, J.; Carpio, F.; Jukan, A.; Masip-Bruin, X. A survey of communication protocols for internet of things and related challenges of fog and cloud computing integration. ACM Comput. Surv. 2019, 51, 116. [Google Scholar] [CrossRef]
- Asghari, P.; Rahmani, A.M.; Javadi, H.H.S. Internet of Things applications: A systematic review. Comput. Netw. 2019, 148, 241–261. [Google Scholar] [CrossRef]
- Bello, O.; Zeadally, S. Toward efficient smartification of the Internet of Things (IoT) services. Future Gener. Comput. Syst. 2019, 92, 663–673. [Google Scholar] [CrossRef]
- Talavera, J.M.; Tobón, L.E.; Gómez, J.A.; Culman, M.A.; Aranda, J.M.; Parra, D.T.; Quiroz, L.A.; Hoyos, A.; Garreta, L.E. Review of IoT applications in agro-industrial and environmental fields. Comput. Electron. Agric. 2017, 142, 283–297. [Google Scholar] [CrossRef]
- Han, S.N.; Khan, I.; Lee, G.M.; Crespi, N.; Glitho, R.H. Service composition for IP smart object using realtime Web protocols: Concept and research challenges. Comput. Stand. Interfaces 2016, 43, 79–90. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Da Xu, L.; Zhao, S. The internet of things: A survey. Inf. Syst. Front. 2015, 17, 243–259. [Google Scholar] [CrossRef]
- Souri, A.; Asghari, P.; Rezaei, R. Software as a service based CRM providers in the cloud computing: Challenges and technical issues. J. Serv. Sci. Res. 2017, 9, 219–237. [Google Scholar] [CrossRef]
- Souri, A.; Rahmani, A.M.; Jafari Navimipour, N. Formal verification approaches in the web service composition: A comprehensive analysis of the current challenges for future research. Int. J. Commun. Syst. 2018, 31, e3808. [Google Scholar] [CrossRef]
- Chettri, L.; Bera, R. A comprehensive survey on Internet of Things (IoT) toward 5G wireless systems. IEEE Internet Things J. 2019, 7, 16–32. [Google Scholar] [CrossRef]
- Tun, S.Y.Y.; Madanian, S.; Mirza, F. Internet of things (IoT) applications for elderly care: A reflective review. Aging Clin. Exp. Res. 2020. [Google Scholar] [CrossRef]
- Redhu, S.; Maheshwari, M.; Yeotikar, K.; Hegde, R.M. Joint Data Latency and Packet Loss Optimization for Relay-Node Selection in Time-Varying IoT Networks. In Proceedings of the 24th Annual International Conference on Mobile Computing and Networking, New Delhi, India, 29 October–2 November 2018; pp. 711–713. [Google Scholar]
- De Almeida, I.B.F.; Mendes, L.L.; Rodrigues, J.J.; da Cruz, M.A. 5G waveforms for IoT applications. IEEE Commun. Surv. Tutor. 2019, 21, 2554–2567. [Google Scholar] [CrossRef]
- Kim, S.; Kim, S. User preference for an IoT healthcare application for lifestyle disease management. Telecommun. Policy 2018, 42, 304–314. [Google Scholar] [CrossRef]
- Fafoutis, X.; Clare, L.; Grabham, N.; Beeby, S.; Stark, B.; Piechocki, R.; Craddock, I. Energy neutral activity monitoring: Wearables powered by smart inductive charging surfaces. In Proceedings of the 2016 13th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), London, UK, 27–30 June 2006; pp. 1–9. [Google Scholar]
- Jimenez, F.; Torres, R. Building an IoT-aware healthcare monitoring system. In Proceedings of the 2015 34th International Conference of the Chilean Computer Science Society (SCCC), Santiago, Chile, 9–13 November 2015; pp. 1–4. [Google Scholar]
- Ding, Y.; Gang, S.; Hong, J. The design of home monitoring system by remote mobile medical. In Proceedings of the 2015 7th International Conference on Information Technology in Medicine and Education (ITME), Huangshan, China, 13–15 November 2015; pp. 278–281. [Google Scholar]
- Atlam, H.F.; Wills, G.B. IoT security, privacy, safety and ethics. In Digital Twin Technologies and Smart Cities; Springer: Cham, Switzerland, 2020; pp. 123–149. [Google Scholar]
- Baloch, Z.; Shaikh, F.K.; Unar, M.A. A context-aware data fusion approach for health-IoT. Int. J. Inf. Technol. 2018, 10, 241–245. [Google Scholar] [CrossRef]
- Subrahmanyam, V.; Zubair, M.A.; Kumar, A.; Rajalakshmi, P. A low power minimal error IEEE 802.15. 4 Transceiver for heart monitoring in IoT applications. Wirel. Pers. Commun. 2018, 100, 611–629. [Google Scholar] [CrossRef]
- Lin, S.C.; Wen, C.Y.; Sethares, W.A. Two-tier device-based authentication protocol against PUEA attacks for IoT applications. IEEE Trans. Signal Inf. Process. Over Netw. 2017, 4, 33–47. [Google Scholar] [CrossRef]
- Damis, H.A.; Khalid, N.; Mirzavand, R.; Chung, H.J.; Mousavi, P. Investigation of epidermal loop antennas for biotelemetry IoT applications. IEEE Access 2018, 6, 15806–15815. [Google Scholar] [CrossRef]
- Elappila, M.; Chinara, S.; Parhi, D.R. Survivable path routing in WSN for IoT applications. Pervasive Mob. Comput. 2018, 43, 49–63. [Google Scholar] [CrossRef]
- Jebadurai, J.; Peter, J.D. Super-resolution of retinal images using multi-kernel SVR for IoT healthcare applications. Future Gener. Comput. Syst. 2018, 83, 338–346. [Google Scholar] [CrossRef]
- Malik, H.; Alam, M.M.; Le Moullec, Y.; Kuusik, A. NarrowBand-IoT performance analysis for healthcare applications. Procedia Comput. Sci. 2018, 130, 1077–1083. [Google Scholar] [CrossRef]
- Hamdan, R. Human factors for IoT services utilization for health information exchange. J. Theor. Appl. Inf. Technol. 2018, 96, 2095–2105. [Google Scholar]
- Shahidul Islam, M.; Islam, M.T.; Almutairi, A.F.; Beng, G.K.; Misran, N.; Amin, N. Monitoring of the human body signal through the Internet of Things (IoT) based LoRa wireless network system. Appl. Sci. 2019, 9, 1884. [Google Scholar] [CrossRef] [Green Version]
- Dauwed, M.A.; Yahaya, J.; Mansor, Z.; Hamdan, A.R. Determinants of internet of things services utilization in health information exchange. J. Eng. Appl. Sci. 2018, 13, 10490–10501. [Google Scholar]
- Li, H.; Wang, H.; Yin, W.; Li, Y.; Qian, Y.; Hu, F. Development of a remote monitoring system for henhouse environment based on IoT technology. Future Internet 2015, 7, 329–341. [Google Scholar] [CrossRef] [Green Version]
- Kim, N.S.; Lee, K.; Ryu, J.H. Study on IoT based wild vegetation community ecological monitoring system. In Proceedings of the 2015 Seventh International Conference on Ubiquitous and Future Networks, Sapporo, Japan, 7–10 July 2015; pp. 311–316. [Google Scholar]
- Nordin, R.; Mohamad, H.; Behjati, M.; Kelechi, A.H.; Ramli, N.; Ishizu, K.; Kojima, F.; Ismail, M.; Idris, M. The world-first deployment of narrowband IoT for rural hydrological monitoring in UNESCO biosphere environment. In Proceedings of the 2017 IEEE 4th International Conference on Smart Instrumentation, Measurement and Application (ICSIMA), Putrajaya, Malaysia, 28–30 November 2017; pp. 1–5. [Google Scholar]
- Yuen, M.C.; Chu, S.Y.; Hong Chu, W.; Shuen Cheng, H.; Lam Ng, H.; Pang Yuen, S. A low-cost IoT smart home system. Int. J. Eng. Technol. 2018, 7, 3143–3147. [Google Scholar]
- Sukmaningsih, D.W.; Suparta, W.; Trisetyarso, A.; Abbas, B.S.; Kang, C.H. Proposing Smart Disaster Management in Urban Area. In Proceedings of the Asian Conference on Intelligent Information and Database Systems, Yogyakarta, Indonesia, 8–11 April 2019; pp. 3–16. [Google Scholar]
- Ahamad, F.; Latif, M.; Yusoff, M.; Khan, M.; Juneng, L. So near yet so different: Surface ozone at three sites in Malaysia. EES 2019, 228, 012024. [Google Scholar] [CrossRef]
- Suparta, W.; Alhasa, K.M.; Singh, M.S.J. Preliminary Development of Greenhouse Gases System Data Logger Using Microcontroller Netduino. Adv. Sci. Lett. 2017, 23, 1398–1402. [Google Scholar] [CrossRef]
- Montori, F.; Bedogni, L.; Bononi, L. A collaborative internet of things architecture for smart cities and environmental monitoring. IEEE Internet Things J. 2017, 5, 592–605. [Google Scholar] [CrossRef]
- Zia, T.; Liu, P.; Han, W. Application-specific digital forensics investigative model in internet of things (iot). In Proceedings of the 12th International Conference on Availability, Reliability and Security, Reggio Calabria, Italy, 29 August–1 September 2017; pp. 1–7. [Google Scholar]
- Lin, Y.B.; Lin, Y.W.; Hsiao, C.Y.; Wang, S.Y. Location-based IoT applications on campus: The IoTtalk approach. Pervasive Mob. Comput. 2017, 40, 660–673. [Google Scholar] [CrossRef]
- Zeng, X.; Garg, S.K.; Strazdins, P.; Jayaraman, P.P.; Georgakopoulos, D.; Ranjan, R. IOTSim: A simulator for analysing IoT applications. J. Syst. Archit. 2017, 72, 93–107. [Google Scholar] [CrossRef]
- Chen, S.; Liu, B.; Chen, X.; Zhang, Y.; Huang, G. Framework for adaptive computation offloading in iot applications. In Proceedings of the 9th Asia-Pacific Symposium on Internetware, Shanghai, China, 23 September 2017; pp. 1–6. [Google Scholar]
- Urbieta, A.; González-Beltrán, A.; Mokhtar, S.B.; Hossain, M.A.; Capra, L. Adaptive and context-aware service composition for IoT-based smart cities. Future Gener. Comput. Syst. 2017, 76, 262–274. [Google Scholar] [CrossRef] [Green Version]
- Seo, D.; Jeon, Y.B.; Lee, S.H.; Lee, K.H. Cloud computing for ubiquitous computing on M2M and IoT environment mobile application. Clust. Comput. 2016, 19, 1001–1013. [Google Scholar] [CrossRef]
- Lee, C.; Wang, C.; Kim, E.; Helal, S. Blueprint flow: A declarative service composition framework for cloud applications. IEEE Access 2017, 5, 17634–17643. [Google Scholar] [CrossRef]
- Akbar, A.; Kousiouris, G.; Pervaiz, H.; Sancho, J.; Ta-Shma, P.; Carrez, F.; Moessner, K. Real-time probabilistic data fusion for large-scale IoT applications. IEEE Access 2018, 6, 10015–10027. [Google Scholar] [CrossRef]
- Sun, X.; Ansari, N. Traffic load balancing among brokers at the IoT application layer. IEEE Trans. Netw. Serv. Manag. 2017, 15, 489–502. [Google Scholar] [CrossRef]
- Sun, X.; Ansari, N. Dynamic resource caching in the IoT application layer for smart cities. IEEE Internet Things J. 2017, 5, 606–613. [Google Scholar] [CrossRef]
- Krishna, G.G.; Krishna, G.; Bhalaji, N. Analysis of routing protocol for low-power and lossy networks in IoT real time applications. Procedia Comput. Sci. 2016, 87, 270–274. [Google Scholar] [CrossRef] [Green Version]
- Naranjo, P.G.V.; Pooranian, Z.; Shojafar, M.; Conti, M.; Buyya, R. FOCAN: A Fog-supported smart city network architecture for management of applications in the Internet of Everything environments. J. Parallel Distrib. Comput. 2019, 132, 274–283. [Google Scholar] [CrossRef] [Green Version]
- Alodib, M. QoS-Aware approach to monitor violations of SLAs in the IoT. J. Innov. Digit. Ecosyst. 2016, 3, 197–207. [Google Scholar] [CrossRef]
- Han, S.N.; Crespi, N. Semantic service provisioning for smart objects: Integrating IoT applications into the web. Future Gener. Comput. Syst. 2017, 76, 180–197. [Google Scholar] [CrossRef]
- Huo, Y.; Qiu, P.; Zhai, J.; Fan, D.; Peng, H. Multi-objective service composition model based on cost-effective optimization. Appl. Intell. 2018, 48, 651–669. [Google Scholar] [CrossRef]
- Huo, L.; Wang, Z. Service composition instantiation based on cross-modified artificial Bee Colony algorithm. China Commun. 2016, 13, 233–244. [Google Scholar] [CrossRef]
- Temglit, N.; Chibani, A.; Djouani, K.; Nacer, M.A. A distributed agent-based approach for optimal QoS selection in web of object choreography. IEEE Syst. J. 2017, 12, 1655–1666. [Google Scholar] [CrossRef]
- Cao, B.; Liu, J.; Wen, Y.; Li, H.; Xiao, Q.; Chen, J. QoS-aware service recommendation based on relational topic model and factorization machines for IoT Mashup applications. J. Parallel Distrib. Comput. 2019, 132, 177–189. [Google Scholar] [CrossRef]
- Cuomo, S.; Di Somma, V.; Sica, F. An application of the one-factor HullWhite model in an IoT financial scenario. Sustain. Cities Soc. 2018, 38, 18–20. [Google Scholar] [CrossRef]
- Hull, J.; White, A. Numerical procedures for implementing term structure models I: Single-factor models. J. Deriv. 1994, 2, 7–16. [Google Scholar] [CrossRef]
- Pustišek, M.; Kos, A. Approaches to front-end IoT application development for the ethereum blockchain. Procedia Comput. Sci. 2018, 129, 410–419. [Google Scholar] [CrossRef]
- Park, J.H. Advances in future Internet and the industrial Internet of Things. Symmetry 2019, 11, 244. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Li, S.; Zhao, S. QoS-aware scheduling of services-oriented internet of things. IEEE Trans. Ind. Inform. 2014, 10, 1497–1505. [Google Scholar]
- Venticinque, S.; Amato, A. A methodology for deployment of IoT application in fog. J. Ambient Intell. Humaniz. Comput. 2019, 10, 1955–1976. [Google Scholar] [CrossRef]
- Jin, Y.; Raza, U.; Aijaz, A.; Sooriyabandara, M.; Gormus, S. Content centric cross-layer scheduling for industrial IoT applications using 6TiSCH. IEEE Access 2017, 6, 234–244. [Google Scholar] [CrossRef]
- Kiran, M.S.; Rajalakshmi, P. Performance analysis of CSMA/CA and PCA for time critical industrial IoT applications. IEEE Trans. Ind. Inform. 2018, 14, 2281–2293. [Google Scholar] [CrossRef]
- Ahmad, S.; Alam, N.; Hasan, M. Robust TFET SRAM cell for ultra-low power IoT applications. AEU Int. J. Electron. Commun. 2018, 89, 70–76. [Google Scholar] [CrossRef]
- Kwon, D.; Hodkiewicz, M.R.; Fan, J.; Shibutani, T.; Pecht, M.G. IoT-based prognostics and systems health management for industrial applications. IEEE Access 2016, 4, 3659–3670. [Google Scholar] [CrossRef]
- Luvisotto, M.; Tramarin, F.; Vangelista, L.; Vitturi, S. On the use of LoRaWAN for indoor industrial IoT applications. Wirel. Commun. Mob. Comput. 2018, 2018, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Mazzei, D.; Baldi, G.; Fantoni, G.; Montelisciani, G.; Pitasi, A.; Ricci, L.; Rizzello, L. A Blockchain Tokenizer for Industrial IOT trustless applications. Future Gener. Comput. Syst. 2020, 105, 432–445. [Google Scholar] [CrossRef]
- Diro, A.A.; Reda, H.T.; Chilamkurti, N. Differential flow space allocation scheme in SDN based fog computing for IoT applications. J. Ambient Intell. Humaniz. Comput. 2018, 1–11. [Google Scholar] [CrossRef]
- Naranjo, P.G.V.; Baccarelli, E.; Scarpiniti, M. Design and energy-efficient resource management of virtualized networked Fog architectures for the real-time support of IoT applications. J. Supercomput. 2018, 74, 2470–2507. [Google Scholar] [CrossRef]
- Chen, X.; Shi, Q.; Yang, L.; Xu, J. ThriftyEdge: Resource-efficient edge computing for intelligent IoT applications. IEEE Netw. 2018, 32, 61–65. [Google Scholar] [CrossRef]
- Mangia, M.; Pareschi, F.; Varma, R.; Rovatti, R.; Kovačević, J.; Setti, G. Rakeness-based compressed sensing of multiple-graph signals for IoT applications. IEEE Trans. Circuits Syst. II Express Briefs 2018, 65, 682–686. [Google Scholar] [CrossRef]
- Taghadosi, M.; Albasha, L.; Quadir, N.A.; Rahama, Y.A.; Qaddoumi, N. High efficiency energy harvesters in 65nm CMOS process for autonomous IoT sensor applications. IEEE Access 2017, 6, 2397–2409. [Google Scholar] [CrossRef]
- Alabady, S.A.; Salleh, M.F.M.; Al-Turjman, F. LCPC error correction code for IoT applications. Sustain. Cities Soc. 2018, 42, 663–673. [Google Scholar] [CrossRef]
- Ouedraogo, C.A.; Medjiah, S.; Chassot, C.; Drira, K. Enhancing middleware-based IoT applications through run-time pluggable Qos management mechanisms. application to a oneM2M compliant IoT middleware. Procedia Comput. Sci. 2018, 130, 619–627. [Google Scholar] [CrossRef]
- Kolomvatsos, K. An intelligent, uncertainty driven management scheme for software updates in pervasive IoT applications. Future Gener. Comput. Syst. 2018, 83, 116–131. [Google Scholar] [CrossRef]
- Limonad, L.; Fournier, F.; Haber, D.; Mashkif, N. “Shields”: A Model for Hazard-Oriented Analysis and Implementation of IoT Applications. In Proceedings of the 2018 IEEE International Congress on Internet of Things (ICIOT), San Francisco, CA, USA, 2–7 July 2018; pp. 96–103. [Google Scholar]
- Abedin, S.F.; Alam, M.G.R.; Kazmi, S.A.; Tran, N.H.; Niyato, D.; Hong, C.S. Resource allocation for ultra-reliable and enhanced mobile broadband IoT applications in fog network. IEEE Trans. Commun. 2018, 67, 489–502. [Google Scholar] [CrossRef]
- Bera, S.; Misra, S.; Roy, S.K.; Obaidat, M.S. Soft-WSN: Software-defined WSN management system for IoT applications. IEEE Syst. J. 2016, 12, 2074–2081. [Google Scholar] [CrossRef]
- Sengupta, J.; Ruj, S.; Bit, S.D. A Comprehensive survey on attacks, security issues and blockchain solutions for IoT and IIoT. J. Netw. Comput. Appl. 2020, 149, 102481. [Google Scholar] [CrossRef]
- Chen, S.; Xu, H.; Liu, D.; Hu, B.; Wang, H. A vision of IoT: Applications, challenges, and opportunities with china perspective. IEEE Internet Things J. 2014, 1, 349–359. [Google Scholar] [CrossRef]
- Thibaud, M.; Chi, H.; Zhou, W.; Piramuthu, S. Internet of Things (IoT) in high-risk Environment, Health and Safety (EHS) industries: A comprehensive review. Decis. Support Syst. 2018, 108, 79–95. [Google Scholar] [CrossRef]
- Salman, T.; Jain, R. A survey of protocols and standards for internet of things. Adv. Comput. Commun. 2017, 1, 1–20. [Google Scholar] [CrossRef]
- Granell, C.; Havlik, D.; Schade, S.; Sabeur, Z.; Delaney, C.; Pielorz, J.; Usländer, T.; Mazzetti, P.; Schleidt, K.; Kobernus, M. Future Internet technologies for environmental applications. Environ. Model. Softw. 2016, 78, 1–15. [Google Scholar] [CrossRef]
- Islam, S.; Khalifa, O.O.; Hashim, A.H.A.; Hasan, M.K.; Razzaque, M.A.; Pandey, B. Design and Evaluation of a Multihoming-Based Mobility Management Scheme to Support Inter Technology Handoff in PNEMO. Wirel. Pers. Commun. 2020, 114, 1133–1153. [Google Scholar] [CrossRef]
- Mehmood, Y.; Ahmad, F.; Yaqoob, I.; Adnane, A.; Imran, M.; Guizani, S. Internet-of-things-based smart cities: Recent advances and challenges. IEEE Commun. Mag. 2017, 55, 16–24. [Google Scholar] [CrossRef]
- Nambiar, R.; Shroff, R.; Handy, S. Smart cities: Challenges and opportunities. In Proceedings of the 2018 10th International Conference on Communication Systems & Networks (COMSNETS), Banaglore, India, 3–7 January 2018; pp. 243–250. [Google Scholar]
- Hasan, M.K.; Ahmed, M.M.; Hashim, A.H.A.; Razzaque, A.; Islam, S.; Pandey, B. A Novel Artificial Intelligence Based Timing Synchronization Scheme for Smart Grid Applications. Wirel. Pers. Commun. 2020, 114, 1067–1084. [Google Scholar] [CrossRef]
- Sisinni, E.; Saifullah, A.; Han, S.; Jennehag, U.; Gidlund, M. Industrial internet of things: Challenges, opportunities, and directions. IEEE Trans. Ind. Inform. 2018, 14, 4724–4734. [Google Scholar] [CrossRef]
- Obba, P.; Okakwu, I.K. Performance Evaluation of IPv6 and IPv4 for Future Technologies. In Proceedings of the Advances in Information and Communication: Proceedings of the 2020 Future of Information and Communication Conference (FICC), San Francisco, CA, USA, 5–6 March 2020; p. 15. [Google Scholar]
- Feldner, B.; Herber, P. A qualitative evaluation of IPv6 for the Industrial Internet of Things. Procedia Comput. Sci. 2018, 134, 377–384. [Google Scholar] [CrossRef]
- Sinche, S.; Raposo, D.; Armando, N.; Rodrigues, A.; Boavida, F.; Pereira, V.; Silva, J.S. A Survey of IoT Management Protocols and Frameworks. IEEE Commun. Surv. Tutor. 2019, 22, 1168–1190. [Google Scholar] [CrossRef]
- Cao, J.; Ma, M.; Li, H.; Ma, R.; Sun, Y.; Yu, P.; Xiong, L. A Survey on Security Aspects for 3GPP 5G Networks. IEEE Commun. Surv. Tutor. 2019, 22, 170–195. [Google Scholar] [CrossRef]
- Ahmadi, H.; Arji, G.; Shahmoradi, L.; Safdari, R.; Nilashi, M.; Alizadeh, M. The application of internet of things in healthcare: A systematic literature review and classification. Univers. Access Inf. Soc. 2019, 18, 837–869. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
Protocol | Application | Reference |
---|---|---|
CoAP | IoT communication load from traffic congestion | [64] |
Extend RST to LoWPANs | [65] | |
Reliability through retransmission timeout mechanism | [68] | |
Application layer | [69] | |
Formatting handshaking connection | [70] | |
MQTT | Lightweight M2M communication | [71] |
M2M, WSN, and IoT | [72] | |
Transfer of telemetry-style data | [73] | |
XMPP | Message exchange | [74] |
Multi-party chatting, voice, video calling, and telepresence | [75] | |
Security | [76] | |
AMQP | Financial industry | [77] |
Reliable and trustworthy network | [78] | |
TCP for exchanging messages | [79] |
Reference | Applications |
---|---|
[80] | General applications |
[81] | Services |
[82] | Environment and agriculture |
[83] | Smart objects |
[84] | Architecture |
Reference | Focus Area | Application | Protocol | Device |
---|---|---|---|---|
[91] | Disease management system to improve reliability | A guide for IoT healthcare service providers | - | Independent hand-held device and smartphones |
[92] | Healthcare monitoring for chronic diseases like depression and diabetes | Battery energy efficiency approach using a machine learning technique | - | Wearable devices |
[93] | Healthcare monitoring system which uses low-cost sensors and ensures a lower energy consumption | New architecture and paradigm of monitoring | XMPP | Smartphone |
[94] | Mobile medical home monitoring system to improve the rapidity of factor measurements and ensure a low energy consumption | A new paradigm for mobile medical home monitoring | - | Wearable device |
[95] | Adaptive security management based on metrics to enhance security | Adaptive security management standard | - | Boy sensors |
[96] | Synthesis method for e-health to ensure high availability | A new structure for e-health | In connection with the patient’s body | |
[97] | IEEE 802.15.4 transceiver with a low error rate and a higher probability | Framework | IEEE 802.15.4 | Wearable device |
[98] | An efficient protocol to counter PUEA attacks | Algorithm and structure protocol | Multi-tier device-based authentication protocol | - |
[99] | Biotelemetry application to ensure lower costs and energy consumption | Implementation and algorithm | - | Wearable antennas |
[100] | Energy-efficient routing protocol to ensure a lower energy consumption | The path routing protocol in WSN | - | |
[101] | Super-resolution algorithm for healthcare images with slower response time and cost | - | Multi-kernel SVR learning-based image super-resolution | |
[102] | Healthcare monitoring system with lower delay rate and time response | A new algorithm for healthcare monitoring system | NB-IoT | - |
[103] | Human factor evaluation in information exchange in the healthcare environment | It promotes data exchange among healthcare staff and healthcare providers | - | EPR system in hospital emergency department |
[104] | Healthcare managing system developed through MySignals following LoRa wireless network | Collecting human body data | LoRa | Biosensors attached to the body |
[105] | Focusing on chronic conditions beyond the office visit | Iraqi health information system | - | Wearable sensors |
Reference | Focus Area | Application | Protocol | Device |
---|---|---|---|---|
[106] | Monitor and control many environmental factors of henhouses in chicken farms | Henhouse system | MAC Protocol | Smart devices |
[107] | IoT ecological monitoring system | A prototype for wild vegetation environment monitoring | - | Wireless sensor network |
[108] | The revival of a rural hydrological/water monitoring system | Link located in Tasik Chini | LoRaWAN TCP/IP | Cellular BS and PC |
[109] | Design and modeling of a sensible home automation system | Smart home | RFID | Smart home system |
[110] | A model for smart disaster management using ICT | Smart cities | - | - |
[111] | Identify critical challenges in ozone mitigation | Department of Environment Malaysia | - | - |
[112] | Development of a Greenhouse Gases monitoring system | Remote area | - | NetDuino 3 WIFI |
Reference | Focus Area | Application | Protocol | Device |
---|---|---|---|---|
[113] | Semantic-aware mobile crowd-sensing | Service composition in smart city | Cellular | Smartphone and laptop |
[114] | Digital forensics |
| ||
[115] | Location finding along with the updated location configuration features |
| LoRa | Sensor device inside an ‘umbrella tube’ |
[116] | Big Data processing | Smart home | Bluetooth low energy (BLE) | MapReduce |
[117] | Analyze and predict the performance of applications used in scalable platforms | Smart home | LoRa | Remote device and server |
[118] | Context-aware service composition | Smart home | wEASEL | Smartphone |
[119] | Cloud computing service composition | Vehicular monitoring | OIDM2M | |
[120] | QoS service composition | Smart home | Bayesian networks | Smart devices |
[121] | Manage heterogeneous data streams | Weather systems | ITS | |
[122,123] | Traffic management and dynamic resource caching management | Street parking system | CoAP | WSN Devices |
[124] | Real-time low power routing protocol | Smart city | RPL | |
[125] | Fog-based architecture to manage IoT applications | 3G/4G Cellular WiFi ZigBee |
Reference | Focus Area | Application | Protocol | Device |
---|---|---|---|---|
[126] | QoS-aware service composition | Ecosystem | SoA | Smart devices |
[127] | Semantic-aware service composition | Smart homes Smart devices | 6LoWPAN CoAP | Smart objects |
[128] | QoS-aware multi-objective service composition | Composite service Optimization service | - | - |
[129] | QoS-aware service composition | Optimization service | IP | - |
[130] | QoS-aware multi-agent composition | Web services | XMPP | - |
[131] | Service accuracy | IoT Mashup application | RTM and FM | IoT sensors |
[132,133] | Finance data flow system | Financial and banking sector | NFC | - |
[134] | Etherum BC | Smart grid | BC | - |
Reference | Focus Area | Application | Protocol | Device |
---|---|---|---|---|
[136] | QoS-aware scheduling for service-oriented IoT devices | Scheduling if IoT | WSN | Mobile devices |
[137] | Automatic learning of energy profiles and enhancing platform strategy | IoT Fog application | - | - |
[138] | Content-based cross-layer scheduling | Industrial plant | IEEE 802.15.4-2015 TSCH MAC | - |
[139] | Nonbeacon-enabled personal area network | Industrial monitoring and automation | IEEE 802.15.4-2015 | - |
[140] | Ultra-low-power robust cell | Electronics industry | - | TFET SRAM |
[141] | Concept of prognostics and systems health management (PHM) | Medical industry | - | Smart object appliance |
[142] | The idea of Industrial IoT (IIoT) focusing on Low-Power Wide-Area Networks (LPWANs) | The indoor industrial monitoring system | LoRaWAN SF 7 LoRaWAN Fair Mod. IEEE 802.15.4 | Industrial sensors |
[143] | Industrial Blockchain Tokenizer (IBT) technology | Industrial robot security | Ad-hoc Haye | Sensors |
Reference | Focus Area | Application | Protocol | Device |
---|---|---|---|---|
[144] | SDN allocation method and IoT/fog | Very low and predictable latency applications | Openflow | Smart devices |
[145] | Energy-efficient resource management |
| TCP/IP 5G | Smart devices |
[146] | Resource-efficient edge computing |
| Cellular | Intelligent IoT device |
[147] | Compressed sensing based on reakness for IoT applications |
| - | - |
[148] | Energy-efficient saving rectifier circuits |
| Bluetooth/WLAN | - |
[149] | Low complexity parity checking | Wireless sensor networks | - |
|
[150] | QoS-independent and dynamic management | M2M | Cellular 3G and 4G | PC and smartphone |
[151] | Software update management | Pervasive IoT applications | CoAP | - |
[152] | Hazard-oriented analysis and implementation | Hazard-centric IoT application | - | - |
[153] | Mobile broadband resource allocation in Fog networks | Mobile broadband | Cellular | Smartphones |
[154] | WSDN management system |
| IEEE.802.15.4 IEEE 802.11 | - |
IoT Application | Challenges | Opportunities |
---|---|---|
Healthcare applications | ||
Environmental applications | ||
Smart city applications | ||
Commercial applications | ||
Industrial applications | ||
Infrastructural applications |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, R.; Qamar, F.; Hasan, M.K.; Aman, A.H.M.; Ahmed, A.S. Internet of Things and Its Applications: A Comprehensive Survey. Symmetry 2020, 12, 1674. https://doi.org/10.3390/sym12101674
Hassan R, Qamar F, Hasan MK, Aman AHM, Ahmed AS. Internet of Things and Its Applications: A Comprehensive Survey. Symmetry. 2020; 12(10):1674. https://doi.org/10.3390/sym12101674
Chicago/Turabian StyleHassan, Rosilah, Faizan Qamar, Mohammad Kamrul Hasan, Azana Hafizah Mohd Aman, and Amjed Sid Ahmed. 2020. "Internet of Things and Its Applications: A Comprehensive Survey" Symmetry 12, no. 10: 1674. https://doi.org/10.3390/sym12101674
APA StyleHassan, R., Qamar, F., Hasan, M. K., Aman, A. H. M., & Ahmed, A. S. (2020). Internet of Things and Its Applications: A Comprehensive Survey. Symmetry, 12(10), 1674. https://doi.org/10.3390/sym12101674