Slashed Lomax Distribution and Regression Model
Abstract
:1. Introduction
2. Slashed Lomax Distribution
- (i)
- For ,
- (ii)
- and are positive integers, and ,
- (i)
- The reliability (survival) function of Y is given by:
- (ii)
- The hazard rate function of Y is given by:
- (iii)
- The reversed hazard rate of Y is given by:
3. ECM Algorithm for Parameter Estimation
- (i)
- Set up , then:
- (ii)
- Set up , then:
- (iii)
- Set up , then:
- set , and n;
- simulate ;
- simulate ;
- compute ;
- compute .
4. Slashed Lomax Regression Model
5. Application
6. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lomax, K.S. Business failures: Another example of the analysis of failure data. J. Am. Stat. Assoc. 1954, 49, 847–852. [Google Scholar] [CrossRef]
- Myhre, J.; Saunders, S. Screen testing and conditional probability of survival. Lect. Notes-Monogr. Ser. 1982, 2, 166–178. [Google Scholar]
- Balakrishnan, N.; Ahsanullah, M. Relations for single and product moments of record values from Lomax distribution. Sankhy Indian J. Stat. Ser. B 1994, 56, 140–146. [Google Scholar]
- Childs, A.; Balakrishnan, N.; Moshref, M. Order statistics from non-identical right-truncated Lomax random variables with applications. Stat. Pap. 2001, 42, 187–206. [Google Scholar] [CrossRef]
- Howlader, H.A.; Hossain, A.M. Bayesian survival estimation of Pareto distribution of the second kind based on failure-censored data. Comput. Stat. Data Anal. 2002, 38, 301–314. [Google Scholar] [CrossRef]
- Rogers, W.H.; Tukey, J.W. Understanding some long-tailed symmetrical distributions. Stat. Neerl. 1972, 26, 211–226. [Google Scholar] [CrossRef]
- Wang, J.; Genton, M.G. The multivariate skew slash distribution. J. Stat. Plan. Inference 2006, 136, 209–220. [Google Scholar] [CrossRef]
- Gómez, H.W.; Quintana, F.A.; Torres, F.J. A new family of slash-distributions with elliptical contours. Stat. Probab. Lett. 2007, 77, 717–725. [Google Scholar] [CrossRef]
- Arslan, O.; Genc, A.I. A generalization of the multivariate slash distribution. J. Stat. Plan. Inference 2009, 139, 1164–1170. [Google Scholar] [CrossRef]
- Reyes, J.; Gomez, H.W.; Bolfarine, H. Modified slash distribution. Statistics 2013, 47, 929–941. [Google Scholar] [CrossRef]
- Tian, W.; Wang, T.; Gupta, A.K. A new family of multivariate skew slash distribution. Commun. Stat. Theory Methods 2018, 47, 5812–5824. [Google Scholar] [CrossRef]
- Tian, W.; Han, G.; Wang, T.; Pipitpojanakarn, V. EM estimation for multivariate skew slash distribution. In Robustness in Econometrics; Springer: Cham, Switzerland, 2017; pp. 235–248. [Google Scholar]
- Gui, W. Statistical properties and applications of the Lindley slash distribution. J. Appl. Stat. Sci. 2012, 20, 283. [Google Scholar]
- Iriarte, Y.A.; Gomez, H.W.; Varela, H.; Bolfarine, H. Slashed rayleigh distribution. Rev. Colomb. Estadstica 2015, 38, 31–44. [Google Scholar] [CrossRef]
- Iriarte, Y.A.; Castillo, N.O.; Bolfarine, H.; Gomez, H.W. Modified slashed-Rayleigh distribution. Commun. Stat. Theory Methods 2018, 47, 3220–3233. [Google Scholar] [CrossRef]
- Reyes, J.; Vilca, F.; Gallardo, D.I.; Gomez, H.W. Modified slash Birnbaum–Saunders distribution. Hacet. J. Math. Stat. 2017, 46, 969–984. [Google Scholar] [CrossRef]
- Reyes, J.; Iriarte, Y.A.; Jodr, P.; Gomez, H.W. The Slash Lindley–Weibull Distribution. Methodol. Comput. Appl. Probab. 2019, 21, 235–251. [Google Scholar] [CrossRef]
- Iriarte, Y.A.; Rojas, M.A. Slashed power-Lindley distribution. Commun. Stat. Theory Methods 2019, 48, 1709–1720. [Google Scholar] [CrossRef]
- Astorga, J.M.; Iriarte, Y.A.; Gomez, H.W.; Bolfarine, H. Modified slashed generalized exponential distribution. Commun. Stat. Theory Methods 2019, 49, 4603–4617. [Google Scholar] [CrossRef]
- Gómez, Y.M.; Gallardo, D.I.; de Castro, M. A regression model for positive data based on the slashed half-normal distribution. Available online: https://www.ine.pt/revstat/pdf/Aregressionmodelforpositivedata.pdf (accessed on 1 January 2020).
- Jamal, F.; Reyad, H.M.; Nasir, M.A.; Chesneau, C.; Shah, M.A.A.; Ahmed, S.O. Topp-Leone Weibull-Lomax distribution: Properties, Regression Model and Applications. 2019. Available online: https://hal.archives-ouvertes.fr/hal-02270561/ (accessed on 1 January 2020).
- Hamedani, G.G.; Rasekhi, M.; Najibi, S.M.; Yousof, H.M.; Alizadeh, M. Type II general exponential class of distributions. Pak. J. Stat. Oper. Res. 2019, 15, 503–523. [Google Scholar] [CrossRef]
- Meng, X.L.; Rubin, D.B. Maximum likelihood estimation via the ECM algorithm: A general framework. Biometrika 1993, 80, 267–278. [Google Scholar] [CrossRef]
- Lemonte, A.J.; Cordeiro, G.M. An extended Lomax distribution. Statistics 2013, 47, 800–816. [Google Scholar] [CrossRef]
- Tahir, M.H.; Hussain, M.A.; Cordeiro, G.M.; Hamedani, G.G.; Mansoor, M.; Zubair, M. The Gumbel-Lomax distribution: Properties and applications. J. Stat. Theory Appl. 2016, 15, 61–79. [Google Scholar] [CrossRef] [Green Version]
- Kus, C. A new lifetime distribution. Comput. Stat. Data Anal. 2007, 51, 4497–4509. [Google Scholar] [CrossRef]
- Ahmad, T.; Munir, A.; Bhatti, S.H.; Aftab, M.; Raza, M.A. Survival analysis of heart failure patients: A case study. PLoS ONE 2017, 12, e0181001. [Google Scholar] [CrossRef] [PubMed]
Sample | (SD) | (SD) | (SD) | |||
---|---|---|---|---|---|---|
n = 50 | 2 | 1 | 0.5 | 1.8883 (0.0848) | 1.3074 (0.3761) | 0.8684 (0.3455) |
2 | 1 | 1 | 1.9468 (0.0509) | 1.0003 (0.2849) | 1.1409 (0.5941) | |
2 | 1 | 1.5 | 1.9620 (0.0439) | 0.9147 (0.2761) | 1.3130 (0.7770) | |
1 | 0.5 | 1 | 0.9431 (0.0640) | 0.4590 (0.1624) | 1.1234 (0.6727) | |
1 | 1 | 1 | 0.9334 (0.0660) | 0.8869 (0.3077) | 1.0288 (0.5105) | |
1 | 2 | 1 | 0.9305 (0.0676) | 1.7732 (0.6035) | 0.9922 (0.4897) | |
0.5 | 2 | 1 | 0.4480 (0.0408) | 1.6718 (0.6684) | 0.9473 (0.3461) | |
2 | 2 | 1 | 1.9607 (0.0403) | 1.9989 (0.5392) | 1.1505 (0.6040) | |
4 | 2 | 1 | 4.0289 (0.0886) | 1.9676 (0.5494) | 1.0652 (0.3331) | |
n = 100 | 2 | 1 | 0.5 | 1.8869 (0.5755) | 1.3423 (0.2870) | 0.7882 (0.1667) |
2 | 1 | 1 | 1.9626 (0.4163) | 1.0579 (0.2244) | 1.2117 (0.5973) | |
2 | 1 | 1.5 | 1.9745 (0.0328) | 0.9262 (0.1931) | 1.4674 (0.6219) | |
1 | 0.5 | 1 | 0.9431 (0.0489) | 0.4598 (0.1270) | 1.1133 (0.6548) | |
1 | 1 | 1 | 0.9556 (0.0464) | 0.9610 (0.2665) | 1.1394 (0.5322) | |
1 | 2 | 1 | 0.9572 (0.0447) | 1.9481 (0.5402) | 1.1264 (0.5208) | |
0.5 | 2 | 1 | 0.4677 (0.0304) | 1.8369 (0.5869) | 1.0834 (0.4289) | |
2 | 2 | 1 | 1.9673 (0.3313) | 2.0052 (0.4470) | 1.1695 (0.5673) | |
4 | 2 | 1 | 3.9852 (0.0452) | 2.1742 (0.4372) | 1.1036 (0.1969) | |
n = 200 | 2 | 1 | 0.5 | 1.8961 (0.0425) | 1.3209 (0.1952) | 0.7660 (0.0732) |
2 | 1 | 1 | 1.9681 (0.0368) | 1.0377 (0.1805) | 1.1338 (0.5696) | |
2 | 1 | 1.5 | 1.9841 (0.0236) | 0.9704 (0.1689) | 1.5644 (0.5242) | |
1 | 0.5 | 1 | 0.9632 (0.0351) | 0.5031 (0.1172) | 1.1189 (0.4276) | |
1 | 1 | 1 | 0.9651 (0.0353) | 0.9893 (0.2253) | 1.1067 (0.4699) | |
1 | 2 | 1 | 0.9667 (0.0353) | 1.9817 (0.4290) | 1.1444 (0.4659) | |
0.5 | 2 | 1 | 0.4755 (0.0235) | 1.9270 (0.4552) | 1.1307 (0.4125) | |
2 | 2 | 1 | 1.9755 (0.0243) | 2.0940 (0.3621) | 1.1379 (0.5646) | |
4 | 2 | 1 | 4.0136 (0.0758) | 1.9683 (0.5087) | 1.0997 (0.1847) |
Actual Values | Estimated Values (Standard Deviations) | ||||||||
---|---|---|---|---|---|---|---|---|---|
2 | 2 | 1 | 1 | 4 | 2.3164 | 2.4001 | 1.3882 | 1.0299 | 3.9981 |
(1.0269) | (1.0390) | (0.5322) | (0.4223) | (0.4285) | |||||
1 | 1 | 1 | 1 | 4 | 1.0578 | 1.1937 | 1.1643 | 0.9445 | 4.0047 |
(0.3028) | (0.6507) | (0.1921) | (0.4653) | (0.4501) | |||||
1 | 4 | 0.5 | 1 | 4 | 0.8551 | 5.3615 | 1.1127 | 0.8441 | 3.9263 |
(0.2407) | (3.3273) | (0.1690) | (1.9800) | (2.2611) | |||||
0.5 | 3 | 0.5 | 1 | 4 | 0.4843 | 4.6278 | 1.0762 | 0.8408 | 3.3788 |
0.0983 | 2.9716 | 0.1368 | 3.1968 | 2.2944 | |||||
2 | 2 | 1 | −2 | 3 | 2.1730 | 2.3055 | 1.2889 | −2.0105 | 2.9500 |
(0.7806) | (0.9017) | (0.3916) | (0.3225) | (0.3497) | |||||
1 | 1 | 1 | −2 | 3 | 1.0584 | 1.2141 | 1.1524 | −1.9542 | 2.9697 |
(0.3037) | (0.6631) | (0.1387) | (0.3959) | (0.4510) | |||||
1 | 4 | 0.5 | −2 | 3 | 0.8338 | 5.2690 | 1.1026 | −1.9339 | 2.5350 |
(0.2292) | (2.7569) | (0.1260) | (2.5031) | (2.5080) | |||||
0.5 | 3 | 0.5 | −2 | 3 | 0.7387 | 3.2542 | 0.5982 | −1.8997 | 2.7328 |
(0.3441) | (0.5349) | (0.2066) | (0.3553) | (1.4824) | |||||
2 | 2 | 1 | −3 | −5 | 2.2537 | 2.3481 | 1.1121 | −3.2708 | −5.1619 |
(0.3472) | (0.3213) | (0.2769) | (0.7314) | (0.5327) | |||||
1 | 1 | 1 | −3 | −5 | 1.0410 | 1.1262 | 1.0871 | −2.8100 | −4.9051 |
(0.4803) | (0.3203) | (0.1356) | (0.3583) | (0.3044) | |||||
1 | 4 | 0.5 | −3 | −5 | 0.7334 | 3.2508 | 0.3213 | −2.5547 | −4.3723 |
(0.3510) | (1.4735) | (0.3225) | (1.6271) | (1.5240) | |||||
0.5 | 3 | 0.5 | −3 | −5 | 0.4287 | 2.8513 | 0.8711 | −3.4246 | −4.7502 |
(0.1308) | (0.2210) | (0.0805) | (1.3251) | (1.1469) |
Actual Values | Estimated Values (SD) | ||||||||
---|---|---|---|---|---|---|---|---|---|
2 | 2 | 1 | 1 | 4 | 1.9919 | 2.1269 | 1.2682 | 0.9906 | 4.0009 |
(0.5305) | (0.4709) | (0.2391) | (0.2311) | (0.1808) | |||||
1 | 1 | 1 | 1 | 4 | 1.0571 | 1.1489 | 1.1473 | 1.0213 | 4.0196 |
(0.2517) | (0.4530) | (0.1452) | (0.2380) | (0.2790) | |||||
1 | 4 | 0.5 | 1 | 4 | 1.1583 | 5.0987 | 1.0734 | 0.8992 | 3.9050 |
(0.2011) | (2.4680) | (0.1343) | (1.5287) | (1.7334) | |||||
0.5 | 3 | 0.5 | 1 | 4 | 0.4639 | 4.1823 | 1.0946 | 1.1263 | 3.7404 |
(0.0775) | (1.6672) | (0.1658) | (1.4425) | (1.3554) | |||||
2 | 2 | 1 | −2 | 3 | 2.0466 | 2.1632 | 1.2692 | −1.9791 | 3.0303 |
(0.5222) | (0.4559) | (0.2689) | (0.1964) | (0.2036) | |||||
1 | 1 | 1 | −2 | 3 | 1.0346 | 1.1397 | 1.1739 | −2.0267 | 2.9309 |
(0.2461) | (0.5273) | (0.1933) | (0.2701) | (0.2840) | |||||
1 | 4 | 0.5 | −2 | 3 | 0.8323 | 5.0506 | 1.0024 | −1.9508 | 2.5885 |
(0.1907) | (2.0433) | (0.1102) | (1.5322) | (1.4601) | |||||
0.5 | 3 | 0.5 | −2 | 3 | 0.7210 | (3.1815 | 0.5733 | −1.9463 | 2.7575) |
(0.3066) | (0.4831) | (0.2032) | (0.3026) | (0.8780) | |||||
2 | 2 | 1 | −3 | −5 | 2.2334 | 2.2087 | 1.0897 | −2.8324 | −5.1021 |
(0.2031) | (0.1894) | (0.2003) | (0.5485) | (0.4097) | |||||
1 | 1 | 1 | −3 | −5 | 1.0327 | 1.1892 | 0.9358 | −2.9350 | −5.1317 |
(0.2566) | (0.2387) | (0.1348) | (0.3369) | (0.2447) | |||||
1 | 4 | 0.5 | −3 | −5 | 0.2513 | 3.7044 | 0.4024 | −2.7307 | −5.2522 |
(0.3310) | (0.8761) | (0.2550) | (0.5103) | (0.7322) | |||||
0.5 | 3 | 0.5 | −3 | −5 | 0.4553 | 2.9032 | 0.5041 | −3.3221 | −4.8077 |
(0.1003) | (0.1757) | (0.0533) | (0.8258) | (0.6045) |
Actual Values | Estimated Values (SD) | ||||||||
---|---|---|---|---|---|---|---|---|---|
2 | 2 | 1 | 1 | 4 | 1.8919 | 2.0056 | 1.2036 | 1.0105 | 3.9960 |
(0.2624) | (0.2031) | (0.1497) | (0.0966) | (0.0889) | |||||
1 | 1 | 1 | 1 | 4 | 1.0082 | 1.0788 | 1.1737 | 0.9764 | 3.9674 |
(0.1296) | (0.2563) | (0.1687) | (0.1455) | (0.1293) | |||||
1 | 4 | 0.5 | 1 | 4 | 1.0858 | 4.7333 | 0.8826 | 0.9455 | 4.1321 |
(0.1582) | (0.9974) | (0.1125) | (0.9275) | (0.7030) | |||||
0.5 | 3 | 0.5 | 1 | 4 | 0.4870 | 3.7324 | 0.8707 | 1.0973 | 3.8105 |
(0.0532) | (0.7099) | (0.0984) | (1.1261) | (0.8640) | |||||
2 | 2 | 1 | −2 | 3 | 1.8985 | 2.0102 | 1.2102 | −2.0019 | 3.0049 |
(0.3199) | (0.3041) | (0.1904) | (0.0987) | (0.0969) | |||||
1 | 1 | 1 | −2 | 3 | 0.9945 | 1.0723 | 1.1833 | −1.9964 | 2.9891 |
(0.1063) | (0.1932) | (0.2049) | (0.1352) | (0.1334) | |||||
1 | 4 | 0.5 | −2 | 3 | 0.6904 | 4.0533 | 0.7347 | −1.9761 | 2.7032 |
(0.0997) | (0.8376) | (0.0823) | (0.8573) | (0.7067) | |||||
0.5 | 3 | 0.5 | −2 | 3 | 0.6147 | 3.0904 | 0.4930 | −2.0703 | 2.0988 |
(0.1441) | (0.2095) | (0.2011) | (0.2887) | (0.5330) | |||||
2 | 2 | 1 | −3 | −5 | 2.1060 | 2.0313 | 1.0049 | −3.1371 | −5.0980 |
(0.1355) | (0.1208) | (0.1003) | (0.2487) | (0.1072) | |||||
1 | 1 | 1 | −3 | −5 | 1.0313 | 1.0511 | 0.9554 | −3.0508 | −5.0944 |
(0.1089) | (0.1344) | (0.0732) | (0.1457) | (0.2330) | |||||
1 | 4 | 0.5 | −3 | −5 | 1.1417 | 4.1530 | 0.5224 | −3.1811 | −5.2004 |
(0.2113) | (0.3499) | (0.2057) | (0.3734) | (0.2810) | |||||
0.5 | 3 | 0.5 | −3 | −5 | 0.5106 | 3.0833 | 0.4988 | −2.8740 | −5.1311 |
(0.0773) | (0.0927) | (0.0471) | (0.3273) | (0.2474) |
Distribution | a | loglik | AIC | BIC | |||||
---|---|---|---|---|---|---|---|---|---|
Slomax | 4.412 | 251.732 | 2.602 | 979.826 | 1965.653 | 1975.215 | |||
Gulomax | 5.804 | 32.426 | 3.408 | 3.310 | 981.074 | 1970.147 | 1982.897 | ||
Blomax | 102.216 | 319.152 | 1.694 | 0.046 | 979.042 | 1966.085 | 1978.834 | ||
ESlomax | 0.788 | 12.283 | 1001.531 | 1999.062 | 1992.688 |
Model | ||||
---|---|---|---|---|
Parameter | RSlomax | RGulomax | RBlomax | RESlomax |
0.5340 | 5.2335 | 0.6819 | 0.6235 | |
7.0880 | 7.6835 | 10.3537 | - | |
4.5721 | 8.6872 | - | - | |
- | 3.8718 | - | - | |
a | - | - | 7.2867 | 5.8261 |
- | - | 2.2743 | - | |
−297.3180 | −7.6412 | 1.1414 | 5.2382 | |
0.1164 | 0.0142 | 0.0327 | 0.0688 | |
−0.7148 | 0.2185 | −0.4258 | 1.1429 | |
2.1672 | 0.0843 | −0.0259 | 0.0532 | |
0.1286 | −0.0820 | −0.0674 | −0.2133 | |
-loglik | 504.2635 | 508.7053 | 507.0078 | 526.2180 |
AIC | 1024.5270 | 1035.4110 | 1032.0160 | 1066.4360 |
BIC | 1045.0420 | 1058.4900 | 1055.0950 | 1084.3860 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Tian, W. Slashed Lomax Distribution and Regression Model. Symmetry 2020, 12, 1877. https://doi.org/10.3390/sym12111877
Li H, Tian W. Slashed Lomax Distribution and Regression Model. Symmetry. 2020; 12(11):1877. https://doi.org/10.3390/sym12111877
Chicago/Turabian StyleLi, Huihui, and Weizhong Tian. 2020. "Slashed Lomax Distribution and Regression Model" Symmetry 12, no. 11: 1877. https://doi.org/10.3390/sym12111877
APA StyleLi, H., & Tian, W. (2020). Slashed Lomax Distribution and Regression Model. Symmetry, 12(11), 1877. https://doi.org/10.3390/sym12111877