Multi-Parameter Optimization of an InP Electro-Optic Modulator
Abstract
:1. Introduction
2. Theory
2.1. EOM Electrode Design
2.2. Light Wave Propagation in the Optical Waveguide
2.2.1. Waveguide Optical Fill Factor
2.2.2. Refractive Index Control
2.2.3. Optical Loss
3. Target EOM Parameter Calculation Algorithm
- Maximal frequency of EO conversion . This frequency is used as the reference requirement for the calculation of the two TWE parameters that are used directly in the algorithm described below. The first is the TWE internal electrode period ; the optimization of this parameter for a 40 GHz EO conversion frequency is given in [21]. The second is the maximal electrical signal loss in the single TWE section . As a rule, corresponds to the maximal frequency of the EO conversion. Choosing maximal loss provides a calculation of the target parameters for the “worst” case. The value of can be obtained via simulation results or as a result of scattering parameter measurements;
- Part of the internal electrodes’ specific capacitance which is associated with the PIN diode structure with respect to (2)–(4). The case when has a maximal available value is preferable for obtaining the maximal efficiency of the EO conversion. An example of TWE optimization based on this principle is given in [22];
- Arsenic mole fraction in the quantum well layer ();
- Internal electrode fill factor ();
- Optical waveguide width ();
- InP barrier layer thickness ();
- quantum well layer thickness ();
- InP n-spacer thickness ();
- Quantity of periods in MQW ();
- Bias voltage ();
- Control voltage amplitude ().
4. EOM Optimization Example
4.1. Input Parameter Limits
4.2. Calculation Results and Data Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mitchel, P.; Longone, R.; Janssen, A.; Garrett, B.; Luo, J.K. Le Evaluation of an InP Mach-Zehnder modulator for high speed optical network system architectures and emerging photonically integrated optical modules. J. Optoelectron. Adv. Mater. 2010, 12, 965–974. [Google Scholar]
- Sun, J.; Timurdogan, E.; Yaacobi, A.; Su, Z.; Hosseini, E.; Cole, D.B.; Watts, M.R. Large-Scale Silicon Photonic Circuits for Optical Phased Arrays. J. Sel. Top. Quantum Electron. 2014, 20. [Google Scholar] [CrossRef]
- Qing, T.; Xue, M.; Huang, M.; Pan, S. Measurement of optical magnitude response based on double-sideband modulation. Opt. Lett. 2014, 39, 6174–6176. [Google Scholar] [CrossRef] [Green Version]
- Porte, H.; Kernec, A.; Quesada, L.P.; Esquivias, I.; Brahimi, H.; Gonzalez, J.B.; Mottet, A.; Sotom, M. Optimization and evaluation in space conditions of multi-GHz optical modulators. In Proceedings of the International Conference on Space Optics (ICSO 2014), Tenerife, Canary Islands, Spain, 7–10 October 2014. [Google Scholar]
- Zhang, X.; Lee, B.; Lin, C.; Wang, A.X.; Hosseini, A.; Chen, R.T. Highly Linear Broadband Optical Modulator Based on Electro-Optic Polymer. IEEE Photonics J. 2012, 4, 2214–2228. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.T.; Shih, R.; Robinson, D.; Jannson, T. Single—Mode optically activated phase modulator on GaAs/GaAlAs compound semiconductor rib waveguides. J. Appl. Phys. 1993, 74, 5964–5971. [Google Scholar] [CrossRef] [Green Version]
- Baier, M.; Grote, N.; Moehrle, M.; Sigmund, A.; Soares, F.M.; Theurer, M.; Troppenz, U. Integrated transmitter devices on InP exploiting electro-absorption modulation. PhotoniX 2020, 1, 4. [Google Scholar] [CrossRef]
- Klein, H. Integrated InP Mach-Zehnder Modulators for 100 Gbit/s Ethernet Applications Using QPSK Modulation. Ph.D. Thesis, Berlin Institute of Technology, Berlin, Germany, 2010. [Google Scholar]
- Wang, H.-T.; Zhou, D.-B.; Zhang, R.-K.; Lu, D.; Zhao, L.-J.; Zhu, H.-L.; Wang, W.; Ji, C. Optimization of 1.3-µm InGaAsP/InP Electro-Absorption Modulator. Chin. Phys. Lett. 2015, 32, 084203. [Google Scholar] [CrossRef]
- Stanley, A.I.; Singh, G.; Eke, J.; Tsuda, H. Mach-Zehnder Interferometer: A review of a perfect all optical switching structure. In Proceedings of the International Conference on Recent Cognizance in Wireless Communication & Image Processing (ICRCWIP 2015), New Delhi, India, 16 January 2016; pp. 415–426. [Google Scholar]
- Kim, S.; Lee, C.; Song, M.; Kwak, M.H. Design and characterization for travelling wave electrodes of high—Speed Mach—Zehnder electro—Optic modulator on an n—Doped InP substrate. Microw. Opt. Technol. Lett. 2018, 60, 1558–1562. [Google Scholar] [CrossRef]
- Chen, H. Development of an 80 Gbit/s InP-based Mach-Zehnder Modulator. Ph.D. Thesis, Berlin Institute of Technology, Berlin, Germany, 2007. [Google Scholar]
- Van de Hulsbeek, A.J.G.M. Design, Fabrication and Characterization of a Mach-Zehnder Interferometric Switch within the POLarization Based Integration Scheme (POLIS). Master’s Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 2006. [Google Scholar]
- Adachi, S.; Oe, K. Linear electro-optic effects in zincblende-type semiconductors: Key properties of InGaAsP relevant to device design. J. Appl. Phys. 1984, 56, 74–80. [Google Scholar] [CrossRef]
- Maat, D.H.P. InP-Based Integrated MZI Switches for Optical Communication. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2001. [Google Scholar]
- Weber, J.P. Optimization of the carrier-induced effective index change in InGaAsP waveguides-application to tunable Bragg filters. IEEE J. Quantum Electron. 1994, 30, 1801–1815. [Google Scholar] [CrossRef]
- Sharma, U.; Wei, X. Fiber Optic Interferometric Devices. In Fiber Optic Sensing and Imaging; Kang, J.U., Ed.; Springer: New York, NY, USA, 2013; pp. 29–53. [Google Scholar]
- Hunsperger, R.G. Integrated Optics: Theory and Technology; Springer Series in Optical Sciences; Springer: Berlin, Germany, 1982. [Google Scholar]
- Callaway, J. Optical Absorption in an Electric Field. Phys. Rev. 1963, 130, 549–553. [Google Scholar] [CrossRef]
- Bennet, B.R.; Soref, R.A. Electrorefraction and Electroabsorption in InP, GaAs, GaSb, Ids, and InSb. IEEE J. Quantum Electron. 1987, 23, 2159–2166. [Google Scholar] [CrossRef]
- Yunusov, I.V.; Arykov, V.S.; Stepanenko, M.V.; Troyan, P.E. Optimization of RF Electrodes for Electro-Optic Modulator Based on Quantum-Confined Stark Effect. In Proceedings of the 20th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM 2019), Erlagol, Russia, 29 June–3 July 2019; pp. 291–295. [Google Scholar]
- Stepanenko, M.V.; Yunusov, I.V.; Kulinich, I.V. Optimization of RF electrodes for electro-optic modulator based on quantum-confined Stark effect. J. Phys. Conf. Ser. 2019, 1145, 012028. [Google Scholar] [CrossRef]
- Soucail, B.; Dupuis, N.; Ferreira, R.; Voisin, P.; Roth, A.P.; Morris, D.; Gibb, K.; Lacelle, C. Electron minibands and Wannier-Stark quantization in an In0.15Ga0.85As-GaAs strained-layer superlattice. Phys. Rev. B 1990, 41, 8568–8571. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.D. Effects of Intentionally Introduced Mismatch Straon on the Operating Characteristics and Temperature Performance of InGaAsP/InP Long Wavelength Semiconductor Lasers. Ph.D. Thesis, McMaster University, Hamilton, ON, Canada, 1993. [Google Scholar]
- Juodawlkis, P.W.; O’Donnell, F.J.; Bailey, R.J.; Plant, J.J.; Ray, K.G.; Oakley, D.C.; Napoleone, A.; Watts, M.R.; Betts, G.E. InGaAsP/InP quantum-well electrorefractive modulators with sub-volt Vπ. In Proceedings of the SPIE, Enabling Photonic Technologies for Aerospace Applications VI, Orlando, FL, USA, 12–16 April 2004; Volume 5435, pp. 53–63. [Google Scholar]
Target Parameter Limits | Value | |
---|---|---|
upper limit, mm | 2.25 | 1.95 |
upper limit, dB | 0.5 | 0.6 |
upper limit, dB | 0.2 | 0.54 |
lower limit, dB | 38 | 33 |
Parameter | Unit | Klein [8] | Chen [12] | Juodawlkis [25] | This Work |
---|---|---|---|---|---|
nm | 1535 | n/d 1 | n/d | 1530 | |
nm | 1565 | n/d 1 | 1560 | 1560 | |
GHz | 45 | 45 | n/d | 40 | |
dB | 0.6–0.7 | n/d | 2.1 | 0.54 | |
dB | n/d | n/d | n/d | 0.56 | |
dB | 24 | n/d | 20 | 32.8 | |
mm | 3 | 4 | 3 | 3.15 | |
V | 4 | 2.8 | 5 | 2 | |
V | 2 | 2.6 | 1 | 2 | |
μm | <200 | 125 | n/d | 150 | |
pF/m | n/d | n/d | n/d | 192 | |
- | n/d | n/d | n/d | 0.923 | |
- | 0.8 | 0.5 | n/d | 0.85 | |
- | 0.76 | n/d | 0.77 | 0.76 | |
- | n/d | n/d | n/d | 0.65 | |
μm | 2 | n/d | 3 | 1.7 | |
nm | 8 | n/d | 8 | 8 | |
nm | 12 | n/d | 12 | 20 | |
- | n/d | 20 | 30 | 18 | |
nm | n/d | n/d | 50–100 | 50 | |
nm | n/d | n/d | 300 | 175 | |
+ + | nm | 700–800 | 900 | 950–1000 | 729 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stepanenko, M.; Yunusov, I.; Arykov, V.; Troyan, P.; Zhidik, Y. Multi-Parameter Optimization of an InP Electro-Optic Modulator. Symmetry 2020, 12, 1920. https://doi.org/10.3390/sym12111920
Stepanenko M, Yunusov I, Arykov V, Troyan P, Zhidik Y. Multi-Parameter Optimization of an InP Electro-Optic Modulator. Symmetry. 2020; 12(11):1920. https://doi.org/10.3390/sym12111920
Chicago/Turabian StyleStepanenko, Mikhail, Igor Yunusov, Vadim Arykov, Pavel Troyan, and Yury Zhidik. 2020. "Multi-Parameter Optimization of an InP Electro-Optic Modulator" Symmetry 12, no. 11: 1920. https://doi.org/10.3390/sym12111920
APA StyleStepanenko, M., Yunusov, I., Arykov, V., Troyan, P., & Zhidik, Y. (2020). Multi-Parameter Optimization of an InP Electro-Optic Modulator. Symmetry, 12(11), 1920. https://doi.org/10.3390/sym12111920