Evolving Hierarchical and Tag Information via the Deeply Enhanced Weighted Non-Negative Matrix Factorization of Rating Predictions
Abstract
:1. Introduction
- Deeply extending the basic MF model to identify hierarchical relationships that facilitate the rating predictions.
- Regularizing the resultant model with tag information, as well as hierarchical data.
- Conducting experiments on the MovieLens 100K dataset (https://grouplens.org/datasets/movielens/) to evaluate the proposed methodology.
- Reducing data sparsity and cold-start issues encountered by other CF methods.
2. Related Work
3. Methodology
3.1. Notations
3.2. Basic Matrix Factorization
3.3. Acquiring the Hierarchical Structured Information
3.4. Incorporating Tag Information
3.5. Optimization Problem
3.5.1. The Basis of Updating
3.5.2. The Basis of Updating
3.6. Convergence Analysis
3.7. Time Complexity Analysis
4. Experiment
4.1. Dataset
4.2. Measurement Metric
4.3. Results
4.3.1. Prediction Accuracy with Tag Information Weights
- Matrix factorization: Proposed by Koren et al. [3], this method factorizes a user–item rating matrix and learns the resultant user and item latent feature vectors to minimize the error between the true and predicted ratings.
- Weighted non-negative matrix factorization: This was also chosen as the base model for the proposed approach, where WNMF attempts to factorize a weighted user–item rating matrix into two non-negative submatrices to minimize the error between the true and predicted ratings.
4.3.2. Mitigation of the Item Cold Start
4.3.3. Top-N Recommendation Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bobadilla, J.; Ortega, F.; Hernando, A.; Gutierrez, A. Recommender systems survey. Knowl. Based Syst. 2013, 46, 109–132. [Google Scholar] [CrossRef]
- Ricci, F.; Rokach, L.; Shapira, B.; Kantor, P.B. Recommender Systems Handbook; Springer: Berlin, Germany, 2011; ISBN 978-0-387-85819-7. [Google Scholar]
- Koren, Y.; Bell, R.; Volinskiy, C. Matrix factorization techniques for recommender systems. IEEE Comput. 2009, 42, 30–37. [Google Scholar] [CrossRef]
- Zhang, S.; Yao, L.; Sun, A.; Tay, Y. Deep Learning based Recommender System: A Survey and New Perspectives. ACM Comput. Surv. 2018, 52, 1–38. [Google Scholar] [CrossRef] [Green Version]
- Ortega, F.; Hurtado, R.; Bobadillla, J.; Bojorque, R. Recommendation to groups of users the singularities concept. IEEE Access 2018, 6, 39745–39761. [Google Scholar] [CrossRef]
- Tuzhilin, A.; Adomavicius, G. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 2005, 17, 734–749. [Google Scholar]
- Su, X.; Khoshgoftaar, T.M. A survey of collaborative filtering techniques. Adv. Artif. Intell. 2009. [Google Scholar] [CrossRef]
- Chatti, M.A.; Dakova, S.; Thus, H.; Schroeder, U. Tag-based collaborative filtering recommendation in personal learning environments. IEEE Trans. Learn. Technol. 2012, 6, 337–349. [Google Scholar] [CrossRef]
- Goldberg, D.; Nichols, D.; Oki, B.M.; Terry, D. Using collaborative filtering to weave an information tapestry. Commun. ACM 1992, 35, 61–70. [Google Scholar] [CrossRef]
- Liu, J.; Tang, M.; Zheng, Z.; Liu, X.; Lyu, S. Location-Aware and Personalized Collaborative Filtering for Web Service Recommendation. IEEE Trans. Serv. Comput. 2016, 9, 686–699. [Google Scholar] [CrossRef]
- Herlocker, J.L.; Konstan, J.A.; Borchers, A.; Riedl, J. An algorithmic framework for performing collaborative filtering. In Proceedings of the SIGIR’99: 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Berkeley, CA, USA, 15–19 August 1999; pp. 230–237. [Google Scholar]
- Guo, X.; Yin, S.-C.; Zhang, Y.-W.; Li, W.; He, Q. Cold start recommendation based on attribute-fused singular value decomposition. IEEE Access 2019, 7, 11349–11359. [Google Scholar] [CrossRef]
- Yang, J.; Sun, Z.; Bozzon, A.; Zhang, J. Learning hierarchical feature influence for recommendation by recursive regularization. In Proceedings of the Recsys: 10th ACM Conference on Recommender System, Boston, MA, USA, 15–19 September 2016; pp. 51–58. [Google Scholar]
- Koren, Y.; Bell, R. Advances in collaborative filtering. In Recommender Systems Handbook; Springer: Berlin, Germany, 2011; pp. 145–186. [Google Scholar]
- Unifying User-Based and Item-Based Collaborative Filtering Approaches by Similarity Fusion; SIGIR ’06; ACM: New York, NY, USA, 2006.
- Zarei, M.R.; Moosavi, M.R. A Memory-Based Collaborative Filtering Recommender System Using Social Ties. In Proceedings of the 4th International Conference on Pattern Recognition and Image Analysis (IPRIA), Tehran, Iran, 6–7 March 2019. [Google Scholar]
- Stephen, S.C.; Xie, H.; Rai, S. Measures of similarity in memory-based collaborative filtering recommender system: A comparison. In Proceedings of the 4th Multidisciplinary International Social Networks Conference, 4th Multidisciplinary International Social Networks Conference (MISNC), Bangkok, Thailand, 17–19 July 2017. [Google Scholar]
- Al-bashiri, H.; Abdulgabber, M.A.; Romli, A.; Kahtan, H. An improved memory-based collaborative filtering method based on the TOPSIS technique. PLoS ONE 2018, 13, e0204434. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, D. An Improved Collaborative Filtering Recommendation Algorithm and Recommendation Strategy. Mobile Inform. Syst. 2019. [Google Scholar] [CrossRef]
- Fang, Y.; Si, L. Matrix co-factorization for recommendation with rich side information and implicit feedback. In Hetrec 11; ACM: New York, NY, USA, 2011. [Google Scholar]
- Kumar, A.; Sodera, N. Open problems in recommender systems diversity. In Proceedings of the International Conference on Computing, Communication and Automation (ICCCA2017), Greater Noida, India, 5–6 May 2017. [Google Scholar]
- Salakhutdinov, R.; Mnih, A. Probabilistic matrix factorization. In Proceedings of the NIPS’07: 20th International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 3–6 December 2007. [Google Scholar]
- Seo, S.; Huang, J.; Yang, H.; Liu, Y. Interpretable convolutional neural networks with dual local and global attention for review rating prediction. In Recsys ’17; ACM: New York, NY, USA, 2017. [Google Scholar]
- Maleszka, M.; Mianowska, B.; Nguyen, N.T. A method for collaborative recommendation using knowledge integration tools and hierarchical structure of user profiles. Knowl. Based Syst. 2013, 47, 2013. [Google Scholar] [CrossRef]
- Ge, M.; Elahi, M.; Tobias, I.F.; Ricci, F.; Massimo, D. Using tags and latent factors in a food recommender system. In Proceedings of the DH ’15: 5th International Conference on Digital Health, Florence, Italy, 18–20 May 2015. [Google Scholar]
- Garg, N.; Weber, I. Personalized, interactive tag recommendation for flickr. In Proceedings of the 2nd ACM International Conference on Recommender Systems, RecSys’08, Lausanne, Switzerland, 23–25 October 2008; pp. 67–74. [Google Scholar] [CrossRef] [Green Version]
- Tso-Sutter, K.H.L.; Marinho, L.B.; Schmidt-Thieme, L. Tag-aware recommender systems by fusion collaborative filtering algorithms. In Proceedings of the SAC ’08: 2008 ACM Symposium on Applied Computing, Fortaleza, Brazil, 16–20 March 2008. [Google Scholar]
- Schein, A.I.; Popescul, A.; Ungar, L.H.; Pennock, D.M. Methods and metrics for cold-start recommendations. In Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Tampere, Finland, 11–15 August 2002; pp. 253–260. [Google Scholar]
- Vall, A.; Skowron, M.; Schedl, M. Improving Music Recommendations with a Weighted Factorization of the Tagging Activity; ISMIR: Montreal, QC, Canada, 2015. [Google Scholar]
- Shi, C.; Liu, J.; Zhuang, F.; Yu, P.S.; Wu, B. Integrating Heterogeneous Information via Flexible Regularization Framework for Recommendation. Knowl. Inform. Syst. 2016, 49, 835–859. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Chen, L.; Yu, Q.; Han, P.; Wu, Z. Trust-Aware Media Recommendation in Heterogeneous Social Networks; Springer: Berlin, Germany, 2015. [Google Scholar]
- Lu, K.; Zhang, G.; Li, R.; Zhang, S.; Wang, B. Exploiting and exploring hierarchical structure in music recommendation. In AIRS 2012: Information Retrieval Technology; Springer: Berlin, Germany, 2012; pp. 211–225. [Google Scholar]
- Nikolakopoulos, N.; Kouneli, M.A.; Garofalakis, J.D. Hierarchical Itemspace Rank: Exploiting hierarchy to alleviate sparsity in ranking-based recommendation. J. Neurocomput. 2015, 163, 126–136. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Wu, H. Tag meet ratings: Improving collaborative filtering with tag-based neighborhood method. In Proceedings of the SRS’10 ACM, Hong Kong, China, 7 February 2010. [Google Scholar]
- Shepitsen, A.; Gemmell, J.; Mobasher, M.; Burke, R. Personalized recommendation in social tagging systems using hierarchical clustering. In Proceedings of the 2008 ACM Conference on Recommender Systems, RecSys, Lausanne, Switzerland, 23–25 October 2008. [Google Scholar]
- Chung, F. Spectral Graph Theory; American Mathematical Society: Providence, RI, USA, 1997. [Google Scholar]
- Trigeorgis, G.; Bousmalis, K.; Zaferiou, S.; Schuller, B. A deep semi-nmf model for learning hidden representations. In Proceedings of the 31st International Conference on Machine Learning (ICML-14), Beijing, China, 21–26 June 2014; pp. 1692–1700. [Google Scholar]
- Lee, D.D.; Seung, H.S. Algorithms for non-negative matrix factorization. Adv. Neural Inf. Process. Syst. 2001, 13, 556–562. [Google Scholar]
- Ding, C.; Li, T.; Peng, W.; Park, H. Orthogonal nonnegative matrix t-factorizations for clustering. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Philadelphia, PA, USA, 20–23 August 2006; pp. 126–135. [Google Scholar]
- Gu, Q.; Zhou, J.; Ding, C.H.Q. Collaborative filtering: Weighted nonnegative matrix factorization incorporating user and item graphs. In Proceedings of the 2010 SIAM International Conference on Data Mining, Columbus, OH, USA, 29 April–1 May 2010; pp. 199–210. [Google Scholar]
- Lam, X.N.; Vu, T.; Le, T.D.; Duong, A.D. Addressing cold-start problem in recommendation systems. In Proceedings of the 2nd International Conference on Ubiquitous Information Management and Communication, Suwon, Korea, 31 January 2008; pp. 208–211. [Google Scholar]
Notation | Description |
---|---|
Matrices are denoted by boldface capital letters | |
Vectors are denoted by boldface lowercase letters | |
Frobenius norm of matrix | |
Hadamard product | |
Regularization parameter | |
Trace of a matrix | |
Extra regularization parameter |
Training Set Size (%) | MAE | ||||
---|---|---|---|---|---|
MF | WNMF | Proposed | |||
MAE | Number of Optimal Hierarchical Levels | ||||
x (Users) | y (Items) | ||||
60 | 0.7635 | 0.7820 | 0.7386 | 2 | 2 |
80 | 0.7586 | 0.7657 | 0.7309 | 2 | 2 |
Cold-Start Case | 50 Cold-Start Items | 100 Cold-Start Items | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
MF | WNMF | Proposed | MF | WNMF | Proposed | |||||
MAE | Number of Optimal Hierarchical Levels | MAE | Number of Optimal Hierarchical Levels | |||||||
x (Users) | y (Items) | x (Users) | y (Items) | |||||||
All items | 0.8894 | 0.8461 | 0.8096 | 2 | 2 | 0.9135 | 0.8836 | 0.8740 | 2 | 2 |
Cold-start items | 0.9247 | 0.8613 | 0.8287 | 2 | 2 | 0.9591 | 0.9165 | 0.9107 | 2 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kutlimuratov, A.; Abdusalomov, A.; Whangbo, T.K. Evolving Hierarchical and Tag Information via the Deeply Enhanced Weighted Non-Negative Matrix Factorization of Rating Predictions. Symmetry 2020, 12, 1930. https://doi.org/10.3390/sym12111930
Kutlimuratov A, Abdusalomov A, Whangbo TK. Evolving Hierarchical and Tag Information via the Deeply Enhanced Weighted Non-Negative Matrix Factorization of Rating Predictions. Symmetry. 2020; 12(11):1930. https://doi.org/10.3390/sym12111930
Chicago/Turabian StyleKutlimuratov, Alpamis, Akmalbek Abdusalomov, and Taeg Keun Whangbo. 2020. "Evolving Hierarchical and Tag Information via the Deeply Enhanced Weighted Non-Negative Matrix Factorization of Rating Predictions" Symmetry 12, no. 11: 1930. https://doi.org/10.3390/sym12111930
APA StyleKutlimuratov, A., Abdusalomov, A., & Whangbo, T. K. (2020). Evolving Hierarchical and Tag Information via the Deeply Enhanced Weighted Non-Negative Matrix Factorization of Rating Predictions. Symmetry, 12(11), 1930. https://doi.org/10.3390/sym12111930