Probabilistic Hybrid Linguistic Approaches for Multiple Attribute Group Decision Making with Decision Hesitancy and the Prioritization of Attribute Relationships
Abstract
:1. Introduction
2. Preliminaries
2.1. Probabilistic Hesitant Fuzzy Set (P-HFS)
2.2. Probabilistic Linguistic Term Set (PLTS)
3. Probabilistic Hybrid Linguistic Term Set
3.1. The Concept of Probabilistic Hybrid Linguistic Term Set (P-HLTS)
3.2. Basic Operational Rules and Comparison Rules for P-UBLTS
- (1)
- If, then.
- (2)
- If, then.
- (3)
- If, then
- 1)
- If, then.
- 2)
- If, then.
- 3)
- If, then.
3.3. Proposed Distance Measure and Entropy Measure for P-UBLTS
- (1)
- ;
- (2)
- if;
- (3)
- .
- (1)
- ;
- (2)
- , if and only ifor;
- (3)
- , if;
- (4)
- , where;
- (5)
- , ifis less fuzzy than.
4. Prioritized Aggregation Operators for P-UBLTS
4.1. PUBL-PWA Operator
- (1)
- Assume that is any permutation of , then for each , there exists one and only one and vice versa. Additionally, . Thus, based on Theorem 3, we have the following:
- (2)
- Suppose , , then we have the following:
4.2. PUBL-IPOWA Operator
5. Approaches for MAGDM under Probabilistic Hybrid Linguistic Environments with Decision Hesitancy and Attribute Prioritization Relationships
6. Illustrative Application Study
6.1. Case Study on Governmental Website Usability Evaluation
6.2. Comparative Studies
6.2.1. Comparative Experiments with Various Configurations of and
6.2.2. Comparative Experiments with Different Approaches
6.3. Sensitivity Analysis
6.4. Further Discussion: Vector Optimization Based Approach to Solving Website Usability Evaluation with Priority Attributes
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Zimmerman, H.J. Fuzzy Set Theory and Its Applications; Springer: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Liu, P.D.; Wu, X.Y. A competency evaluation method of human resources managers based on multi-granularity linguistic variables and vikor method. Technol. Econ. Dev. Econ. 2012, 18, 696–710. [Google Scholar] [CrossRef] [Green Version]
- Liu, P. Multiple attribute group decision making method based on interval-valued intuitionistic fuzzy power heronian aggregation operators. Comput. Ind. Eng. 2017, 108, 199–212. [Google Scholar] [CrossRef]
- Liu, P. A weighted aggregation operators multi-attribute group decision-making method based on interval-valued trapezoidal fuzzy numbers. Appl. Math. Model. 2011, 38, 1053–1060. [Google Scholar] [CrossRef]
- Ju, Y.; Yang, S. Approaches for multi-attribute group decision making based on intuitionistic trapezoid fuzzy linguistic power aggregation operators. J. Intell. Fuzzy Syst. 2014, 27, 987–1000. [Google Scholar] [CrossRef]
- Ju, Y.; Yang, S. A new method for multiple attribute group decision-making with intuitionistic trapezoid fuzzy linguistic information. Soft Comput. 2015, 19, 2211–2224. [Google Scholar] [CrossRef]
- Ju, Y.; Yang, S.; Liu, X. A novel method for multiattribute decision making with dual hesitant fuzzy triangular linguistic information. J. Appl. Math. 2014, 2014, 12. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Chang, J.; Cao, Q.; Liang, C. A trust propagation and collaborative filtering based method for incomplete information in social network group decision making with type-2 linguistic trust. Comput. Ind. Eng. 2019, 127, 853–864. [Google Scholar] [CrossRef]
- Qi, X.; Liang, C.; Zhang, J. Generalized cross-entropy based group decision making with unknown expert and attribute weights under interval-valued intuitionistic fuzzy environment. Comput. Ind. Eng. 2015, 79, 52–64. [Google Scholar] [CrossRef]
- Qi, X.; Liang, C.; Zhang, J. Multiple attribute group decision making based on generalized power aggregation operators under interval-valued dual hesitant fuzzy linguistic environment. Int. J. Mach. Learn. Cybern. 2016, 7, 1147–1193. [Google Scholar] [CrossRef]
- Pang, Q.; Wang, H.; Xu, Z. Probabilistic linguistic term sets in multi-attribute group decision making. Inf. Sci. 2016, 369, 128–143. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, D.; Liang, C.; Leng, Y.; Xu, J. Some single-valued neutrosophic power heronian aggregation operators and their application to multiple-attribute group decision-making. Symmetry 2019, 11, 653. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Qi, X.; Liang, C. Tackling complexity in green contractor selection for mega infrastructure projects: A hesitant fuzzy linguistic madm approach with considering group attitudinal character and attributes’ interdependency. Complexity 2018, 2018, 31. [Google Scholar] [CrossRef]
- Wei, G.; Zhao, X. Some induced correlated aggregating operators with intuitionistic fuzzy information and their application to multiple attribute group decision making. Expert Syst. Appl. 2012, 39, 2026–2034. [Google Scholar] [CrossRef]
- Wei, G. Interval valued hesitant fuzzy uncertain linguistic aggregation operators in multiple attribute decision making. Int. J. Mach. Learn. Cybern. 2016, 7, 1093–1114. [Google Scholar] [CrossRef]
- Ju, Y.B. A new method for multiple criteria group decision making with incomplete weight information under linguistic environment. Appl. Math. Model. 2014, 38, 5256–5268. [Google Scholar] [CrossRef]
- Ju, Y.B.; Wang, A.H.; You, T.H. Emergency alternative evaluation and selection based on anp, dematel, and tl-topsis. Nat. Hazards 2015, 75, S347–S379. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Atanassov, K.T.; Gargov, G. Interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 1989, 31, 343–349. [Google Scholar] [CrossRef]
- Torra, V. Hesitant fuzzy sets. Int. J. Intell. Syst. 2010, 25, 529–539. [Google Scholar] [CrossRef]
- Zhu, B.; Xu, Z.S.; Xia, M.M. Dual hesitant fuzzy sets. J. Appl. Math. 2012, 2012, 13. [Google Scholar] [CrossRef]
- Ju, Y.B.; Liu, X.Y.; Yang, S.H. Interval-Valued dual hesitant fuzzy aggregation operators and their applications to multiple attribute decision making. J. Intell. Fuzzy Syst. 2014, 27, 1203–1218. [Google Scholar] [CrossRef]
- Hao, Z.; Xu, Z.; Zhao, H.; Su, Z. Probabilistic dual hesitant fuzzy set and its application in risk evaluation. Knowl. Based Syst. 2017, 127, 16–28. [Google Scholar] [CrossRef]
- Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning-i. Inf. Sci. 1975, 8, 199–249. [Google Scholar] [CrossRef]
- Herrera-Viedma, E.; López-Herrera, A.G. A model of an information retrieval system with unbalanced fuzzy linguistic information. Int. J. Intell. Syst. 2007, 22, 1197–1214. [Google Scholar] [CrossRef]
- Herrera, F.; Herrera-Viedma, E.; Martinez, L. A fuzzy linguistic methodology to deal with unbalanced linguistic term sets. IEEE Trans. Fuzzy Syst. 2008, 16, 354–370. [Google Scholar] [CrossRef]
- Martínez, L.; Espinilla, M.; Liu, J.; Pérez, L.G.; Sánchez, P.J. An evaluation model with unbalanced linguistic information applied to olive oil sensory evaluation. J. Mult. Valued Log. Soft Comput. 2009, 15, 229–251. [Google Scholar]
- Cai, M.; Gong, Z.; Yu, X. A method for unbalanced linguistic term sets and its application in group decision making. Int. J. Fuzzy Syst. 2016, 19, 1–12. [Google Scholar] [CrossRef]
- Xu, Z.S. Uncertain linguistic aggregation operators based approach to multiple attribute group decision making under uncertain linguistic environment. Inf. Sci. 2004, 168, 171–184. [Google Scholar] [CrossRef]
- Wei, G.; Zhao, X.; Lin, R.; Wang, H. Uncertain linguistic bonferroni mean operators and their application to multiple attribute decision making. Appl. Math. Model. 2013, 37, 5277–5285. [Google Scholar] [CrossRef]
- Liu, P.; Yu, X. 2-Dimension uncertain linguistic power generalized weighted aggregation operator and its application in multiple attribute group decision making. Knowl. Based Syst. 2014, 57, 69–80. [Google Scholar] [CrossRef]
- Liu, P.; He, L.; Yu, X. Generalized hybrid aggregation operators based on the 2-dimension uncertain linguistic information for multiple attribute group decision making. Group Decis. Negot. 2016, 25, 103–126. [Google Scholar] [CrossRef]
- Liu, P. Some geometric aggregation operators based on interval intuitionistic uncertain linguistic variables and their application to group decision making. Appl. Math. Model. 2013, 37, 2430–2444. [Google Scholar] [CrossRef]
- Meng, F.; Chen, X.; Zhang, Q. Some interval-valued intuitionistic uncertain linguistic choquet operators and their application to multi-attribute group decision making. Appl. Math. Model. 2014, 38, 2543–2557. [Google Scholar] [CrossRef]
- Qi, X.-W.; Zhang, J.-L.; Liang, C.-Y. Multiple attributes group decision-making under interval-valued dual hesitant fuzzy unbalanced linguistic environment with prioritized attributes and unknown decision-makers’ weights. Information 2018, 9, 145. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, R.M.; Martínez, L.; Herrera, F. Hesitant fuzzy linguistic term sets for decision making. IEEE Trans. Fuzzy Syst. 2012, 20, 109–119. [Google Scholar] [CrossRef]
- Liao, H.; Jiang, L.; Xu, Z.; Xu, J.; Herrera, F. A linear programming method for multiple criteria decision making with probabilistic linguistic information. Inf. Sci. 2017, 415, 341–355. [Google Scholar] [CrossRef]
- Xie, W.; Ren, Z.; Xu, Z.; Wang, H. The consensus of probabilistic uncertain linguistic preference relations and the application on the virtual reality industry. Knowl. Based Syst. 2018, 162, 14–28. [Google Scholar] [CrossRef]
- Liu, H.; Le, J.; Xu, Z. Entropy measures of probabilistic linguistic term sets. Int. J. Comput. Intell. Syst. 2018, 11, 45–87. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Liao, H. An approach to quality function deployment based on probabilistic linguistic term sets and oreste method for multi-expert multi-criteria decision making. Inf. Fusion 2018, 43, 13–26. [Google Scholar] [CrossRef]
- Xiang, C.; Jing, G.; Xu, Z. Venture capital group decision-making with interaction under probabilistic linguistic environment. Knowl. Based Syst. 2018, 140, 82–91. [Google Scholar]
- Gao, J.; Xu, Z.; Ren, P.; Liao, H. An emergency decision making method based on the multiplicative consistency of probabilistic linguistic preference relations. Int. J. Mach. Learn. Cybern. 2019, 10, 1613–1629. [Google Scholar] [CrossRef]
- Bai, C.Z.; Zhang, R.; Qian, L.X.; Wu, Y.N. Comparisons of probabilistic linguistic term sets for multi-criteria decision making. Knowl. Based Syst. 2017, 119, 284–291. [Google Scholar] [CrossRef]
- Liu, P.; You, X. Probabilistic linguistic todim approach for multiple attribute decision-making. Granul. Comput. 2017, 2, 333–342. [Google Scholar] [CrossRef]
- Zhang, X.; Xing, X. Probabilistic linguistic vikor method to evaluate green supply chain initiatives. Sustainability 2017, 9, 1231. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, R.M.; Martínez, L.; Herrera, F. A group decision making model dealing with comparative linguistic expressions based on hesitant fuzzy linguistic term sets. Inf. Sci. 2013, 241, 28–42. [Google Scholar] [CrossRef]
- Wang, H. Extended hesitant fuzzy linguistic term sets and their aggregation in group decision making. Int. J. Comput. Intell. Syst. 2015, 8, 14–33. [Google Scholar] [CrossRef]
- Liu, P.; Fei, T. Some muirhead mean operators for probabilistic linguistic term sets and their applications to multiple attribute decision-making. Appl. Soft Comput. 2018, 68. [Google Scholar] [CrossRef]
- Liu, P.; Li, Y. Multi-Attribute decision making method based on generalized maclaurin symmetric mean aggregation operators for probabilistic linguistic information. Comput. Ind. Eng. 2019, 131, 282–294. [Google Scholar] [CrossRef]
- Lin, M.W.; Xu, Z.S.; Zhai, Y.L.; Yao, Z.Q. Multi-Attribute group decision-making under probabilistic uncertain linguistic environment. J. Oper. Res. Soc. 2018, 69, 157–170. [Google Scholar] [CrossRef]
- Yager, R.R. Prioritized aggregation operators. Int. J. Approx. Reason. 2008, 48, 263–274. [Google Scholar] [CrossRef] [Green Version]
- Yager, R.R. Prioritized owa aggregation. Fuzzy Optim. Decis. Mak. 2009, 8, 245–262. [Google Scholar] [CrossRef]
- Yager, R.R. Prioritized aggregation operators and their applications. In Proceedings of the 6th IEEE International Conference Intelligent Systems (IS), Sofia, Bulgaria, 6–8 September 2012; pp. 2–5. [Google Scholar]
- Yu, X.H.; Xu, Z.S. Prioritized intuitionistic fuzzy aggregation operators. Inf. Fusion 2013, 14, 108–116. [Google Scholar] [CrossRef]
- Yu, D.; Wu, Y.; Lu, T. Interval-Valued intuitionistic fuzzy prioritized operators and their application in group decision making. Knowl. Based Syst. 2012, 30, 57–66. [Google Scholar] [CrossRef]
- Wei, G. Hesitant fuzzy prioritized operators and their application to multiple attribute decision making. Knowl. Based Syst. 2012, 31, 176–182. [Google Scholar] [CrossRef]
- Jin, F.; Ni, Z.; Chen, H. Interval-Valued hesitant fuzzy einstein prioritized aggregation operators and their applications to multi-attribute group decision making. Soft Comput. 2016, 20, 1863–1878. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, Z.; He, Y. Operations and integrations of probabilistic hesitant fuzzy information in decision making. Inf. Fusion 2017, 38, 1–11. [Google Scholar] [CrossRef]
- Marin, L.; Merigó, J.M.; Valls, A.; Moreno, A.; Isern, D. Induced unbalanced linguistic ordered weighted average. Sci. World J. 2011, 1, 1–8. [Google Scholar]
- Marin, L.; Valls, A.; Isern, D.; Moreno, A.; Merigó, J.M. Induced unbalanced linguistic ordered weighted average and its application in multiperson decision making. Sci. World J. 2014, 2014, 19. [Google Scholar] [CrossRef]
- Gou, X.; Xu, Z.; Liao, H. Multiple criteria decision making based on bonferroni means with hesitant fuzzy linguistic information. Soft Comput. 2016, 21, 1–15. [Google Scholar] [CrossRef]
- Wei, G.; Lin, R.; Wang, H. Distance and similarity measures for hesitant interval-valued fuzzy sets. J. Intell. Fuzzy Syst. 2014, 27, 19–36. [Google Scholar] [CrossRef]
- Zadeh, L.A. Probability measures of fuzzy events. J. Math. Anal. Appli. 1968, 23, 421–427. [Google Scholar] [CrossRef] [Green Version]
- Yager, R.R.; Filev, D.P. Induced ordered weighted averaging operators. IEEE Trans. Syst. Man Cybern. Part B Cybern. 1999, 29, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Yager, R.R. Induced aggregation operators. Fuzzy Sets Syst. 2003, 137, 59–69. [Google Scholar] [CrossRef]
- Chen, H.; Zhou, L. An approach to group decision making with interval fuzzy preference relations based on induced generalized continuous ordered weighted averaging operator. Expert Syst. Appl. 2011, 38, 13432–13440. [Google Scholar] [CrossRef]
- Merigó, J.M.; Casanovas, M. Induced aggregation operators in the euclidean distance and its application in financial decision making. Expert Syst. Appl. 2011, 38, 7603–7608. [Google Scholar] [CrossRef]
- Zhou, L.G.; Chen, H.Y. The induced linguistic continuous ordered weighted geometric operator and its application to group decision making. Comput. Ind. Eng. 2013, 66, 222–232. [Google Scholar] [CrossRef]
- Verkijika, S.F.; de Wet, L. A usability assessment of e-government websites in Sub-Saharan Africa. Int. J. Inf. Manag. 2018, 39, 20–29. [Google Scholar] [CrossRef]
- Baker, D.L. Advancing e-government performance in the united states through enhanced usability benchmarks. Gov. Inf. Q. 2009, 26, 82–88. [Google Scholar] [CrossRef]
- Clemmensen, T.; Katre, D. Chapter 21—Adapting e-gov usability evaluation to cultural contexts. In Usability in Government Systems; Buie, E., Murray, D., Eds.; Morgan Kaufmann: Boston, MA, USA, 2012; pp. 331–344. [Google Scholar]
- Yager, R.R. On the inclusion of importances in owa aggregations. In The Ordered Weighted Averaging Operators; Yager, R.R., Kacprzyk, J., Eds.; Springer: Boston, MA, USA, 1997. [Google Scholar]
- Li, B.; Xu, Z. Prioritized aggregation operators based on the priority degrees in multicriteria decision-making. Int. J. Intell. Syst. 2019, 34, 1985–2018. [Google Scholar] [CrossRef]
- Torra, V. The weighted owa operator. Int. J. Intell. Syst. 1997, 12, 153–166. [Google Scholar] [CrossRef]
- Torra, V.; Narukawa, Y. Modeling Decisions: Information Fusion and Aggregation Operators; Springer: Berlin, Germany, 2007. [Google Scholar]
- Mashunin, K.Y.; Mashunin, Y.K. Simulating engineering systems under uncertainty and optimal decision making. J. Comput. Syst. Sci. Int. 2013, 52, 519–534. [Google Scholar] [CrossRef]
- Mashunin, K.Y.; Mashunin, Y.K. Vector optimization with equivalent and priority criteria. J. Comput. Syst. Sci. Int. 2017, 56, 975–996. [Google Scholar] [CrossRef]
- Mashunin, Y.K. Methods and Models of Vector Optimization; Nauka: Moscow, Russia, 1986. [Google Scholar]
{<between QL and M, 0.2>, <at least VH, 0.7>} | {<between AL and QM, 0.6>} | {<between L and QM, 0.9>} | {<between QL and QM, 1>} | |
{<between AN and QL, 0.4>, <between M and H, 0.6>} | {<between VL and L, 0.7>, < between AL and H, 0.2>} | {<between M and H, 0.8>} | {<between M and QM, 0.3>, < between H and VH, 0.5>} | |
{<between AL and M, 0.2>, <at least VH, 0.8>} | {<between QM and VH, 0.7>} | {<between L and AL, 0.1>, <at least VH, 0.9>} | {<between M and QM, 0.6>} | |
{< at least QM, 0.9>} | {<between QM and H, 0.3>, < at least VH, 0.3>} | {< at least H, 0.7>} | {<between VL and L, 0.7>, <between M and QM, 0.3>} | |
{<between QL and M, 0.6>} | {< at least H, 0.8>} | {<between AL and VH, 0.9>} | {<between VL and QL, 0.4>, < between AL and M, 0.5>} | |
{<between VL and QL, 0.6>, < at least H, 0.2>} | {<between H and VH, 1>} | {<between AN and VL, 0.5>, < between QM and H, 0.5>} | {< at least VH, 0.8>} |
{greater than , 0.8} | {<between and , 0.1>, <greater than , 0.8>} | {<between and , 0.7>, <between and , 0.2>} | {<greater than , 0.8>} | |
{between and , 0.8} | {at least , 0.5} | {greater than , 0.7} | {<between and , 0.2>, <greater than , 0.7>} | |
{between and , 0.9} | {between and , 0.9} | {at least , 0.6} | {<between and , 0.5>, <between and , 0.4>} | |
{<between and , 0.6>, <between and , 0.4>} | {between and , 0.9} | {<between and , 0.5>, <between and , 0.5>} | {at least , 0.9} | |
{between and , 0.4} | {between and , 0.6} | {at least , 0.9} | {between and , 0.8} | |
{<between and , 0.8>, <great than , 0.1>} | {<between and , 0.4>, <great than , 0.5>} | {between and , 0.6} | {between and , 0.9} |
{<[H, AT], 0.9>} | {<[AL, H], 0.8>} | {<[AH, QH], 0.7>} | {<[AL, AH], 0.5>, <[H, QH], 0.5>} | |
{<[M, H], 0.9>, <[VH, T], 0.1>} | {<[AL, H], 0.9>} | {<[L, M], 0.6>, <[H, QH], 0.3>} | {<[QH, AT], 0.6>} | |
{<[M, QH], 0.9>} | {<[L, M], 0.5>, <[AT, T], 0.4>} | {<[VH, AT], 0.7>} | {<[H, QH], 0.2>, <[VH, T], 0.8>} | |
{<[L, AH], 0.7>} | {<[L, M], 0.6>, <[VH, T], 0.3>} | {<[M, AH], 0.3>, <[AT, T], 0.6>} | {<[M, AT], 0.9>} | |
{<[L, AH], 0.8>} | {<[AH, H], 0.3>, <[QH, VH], 0.5>} | {<[QH, AT], 0.6>} | {<[M, H], 0.7>, <[AT, T], 0.2>} | |
{<[AL, M], 0.7>, <[VH, AT], 0.2>} | {<[QH, T], 0.9>} | {<[H, VH], 0.5>} | {<[AL, VH], 0.9>} |
{<[,], 0.2>, <[,], 0.8>} | {<[,], 0.7>} | {<[,], 0.1>, <[,], 0.9>} | {<[,], 0.6>} | |
{<[,], 0.4>, <[,], 0.6>} | {<[,], 0.7>, <[,], 0.2>} | {<[,], 0.8>} | {<[,], 0.3>, <[,], 0.5>} | |
{<[,], 0.6>} | {<[,], 0.8>} | {<[,], 0.9>} | {<[,], 0.4>, <[,], 0.5>} | |
{<[,], 0.6>, <[,], 0.2>} | {<[,], 1>} | {< [,], 0.5>, < [,], 0.5>} | {<[,], 0.8>} | |
{<[,], 0.9>} | {<[,], 0.3>, <[,], 0.3>} | {<[,], 0.7>} | {<[,], 0.7>, <[,], 0.3>} | |
{<[,], 0.2>, <[,], 0.7>} | {<[,], 0.6>} | {<[,], 0.9>} | {<[,], 1>} |
{[,], 0.9} | {[,], 0.9} | {[,], 0.6} | {<[,], 0.5>, <[,], 0.4>} | |
{[,], 0.8} | {[,], 0.5} | {[,], 0.7} | {<[,], 0.2>, <[,], 0.7>} | |
{[,], 0.4} | {[,], 0.6} | {[,], 0.9} | {[,], 0.8} | |
{<[,], 0.8>, <[,], 0.1>} | {<[,], 0.4>, <[,], 0.5>} | {[,], 0.6} | {[,], 0.9} | |
{<[,], 0.6>, <[,], 0.4>} | {[,], 0.9} | {<[,], 0.5>, <[,], 0.5>} | {[,], 0.9} | |
{[,], 0.8} | {<[,], 0.1>, <[,], 0.8>} | {<[,], 0.7>, <[,], 0.2>} | {<[,], 0.8>} |
{<[,], 0.9>} | {<[,], 0.5>, <[,], 0.4>} | {<[,], 0.7>} | {<[,], 0.2>, <[,], 0.8>} | |
{<[,], 0.9>, <[,], 0.1>} | {<[,], 0.9>} | {<[,], 0.6>, <[,], 0.3>} | {<[,], 0.6>} | |
{<[,], 0.8>} | {<[,], 0.3>, <[,], 0.5>} | {<[,], 0.6>} | {<[,], 0.7>, <[,], 0.2>} | |
{<[,], 0.7>, <[,], 0.2>} | {<[,], 0.9>} | {<[,], 0.5>} | {<[,], 0.9>} | |
{<[,], 0.7>} | {<[,], 0.6>, <[,], 0.3>} | {<[,], 0.3>, <[,], 0.6>} | {<[,], 0.9>} | |
{<[,], 0.9>} | {<[,], 0.8>} | {<[,], 0.7>} | {<[,], 0.5>, <[,], 0.5>} |
{<[,], 0.0714>, <[,], 0.2857>, <[,], 0.3214>, <[,], 0.3214>} | {< [,], 0.28>, <[,], 0.56>, <[,], 0.16>} | {<[,], 0.0435>, <[,], 0.6522>, <[,], 0.3043>} | {<[,], 0.24>}, <[,], 0.2>, <[,], 0.24>}, <[,], 0.32>} | |
{<[,], 0.1429>, <[,], 0.5357>, <[,], 0.2857>, <[,], 0.0357>} | {<[,], 0.3043>, < [,], 0.4783>, <[,], 0.2174>} | {<[,], 0.3333>, <[,], 0.2917}>, <[,], 0.25>, <[,], 0.125>} | {<[,], 0.1304>, <[,], 0.087>, <[,], 0.5217>, <[,], 0.2609>} | |
{<[,], 0.3333>, <[,], 0.2222>, <[,], 0.4444>} | {<[,], 0.3636>, <[,], 0.2727> <[,], 0.1364>, <[,], 0.2273>} | {<[,], 0.375>, <[,], 0.375>, <[,], 0.25>} | {<[,], 0.1538>, < [,], 0.1923>, <[,], 0.5769>, <[,], 0.0769>} | |
{<[,], 0.2308>, <[,], 0.1154>, <[,], 0.3077>, <[,], 0.2692>, <[,], 0.0769>} | {<[,], 0.3571>, <[,], 0.1429>, <[,], 0.5>} | {<[,], 0.2381>, <[,], 0.2381>, <[,], 0.2857>, <[,], 0.2381>} | {<[,], 0.3077>, <[,], 0.3462>, <[,], 0.3462>} | |
{<[,], 0.3462>, <[,], 0.2308>, <[,], 0.1538>, <[,], 0.2692>} | {<[,], 0.125>, <[,], 0.25>, <[,], 0.375>, <[,], 0.25>} | {<[,], 0.2692>, <[,], 0.1923>, <[,], 0.1923>, <[,], 0.1154>, <[,], 0.2308>} | {<[,], 0.25>, <[,], 0.1071>, <[,], 0.3214>, <[,], 0.3214>} | |
{<[,], 0.0769>, <[,], 0.5769>, <[,], 0.3462>} | {<[,], 0.3043>, <[,], 0.3478>, <[,], 0.3478>} | {<[,], 0.64>, <[,], 0.08>, <[,], 0.28>} | {<[,], 0.3571>, <[,], 0.2857>, <[,], 0.1786>, <[,], 0.1786>} |
{<[,], 0.144>, <[,], 0.504>} | {<[,], 0.048>, <[,], 0.384>} | {<[,], 0.441>, <[,], 0.126>} | {<[,], 0.4>, <[,], 0.4>} | |
{<[,], 0.288>, <[,], 0.032>, <[,], 0.432>, <[,], 0.048>} | {<[,], 0.315>, < [,], 0.09>} | {<[,], 0.336>, <[,], 0.168}>} | {<[,], 0.036>, <[,], 0.126>, <[,], 0.06>, <[,], 0.21>} | |
{<[,], 0.162>, <[,], 0.648>} | {< [,], 0.315>, <[,], 0.252>} | {<[,], 0.042>, <[,], 0.378>} | {<[,..], 0.06>}, <[,], 0.24>, <[,], 0.048>}, <[,], 0.192>} | |
{<[,], 0.378>, <[,], 0.252>} | {<[,], 0.162>, <[,], 0.081>, <[,], 0.162>, <[,], 0.081>} | {<[,], 0.105>, <[,], 0.21>, <[,], 0.105>, <[,], 0.21>} | {<[,], 0.567>, <[,], 0.243>}. | |
{<[,], 0.192>} | {<[,], 0.144>, <[,], 0.24>} | {<[,], 0.486>} | {<[,], 0.224>, < [,], 0.064>, <[,], 0.28>, <[,], 0.08>} | |
{<[,], 0.336>, <[,], 0.096>, <[,], 0.042>, <[,], 0.012>, <[,], 0.112>, <[,], 0.032>, <[,], 0.014>, <[,], 0.004>} | {<[,], 0.36>, <[,], 0.45>} | {<[,], 0.15>, <[,], 0.15>} | {<[,], 0.648>} |
Attributes | ||
---|---|---|
1.028 | 3 | |
0.64478 | 6 | |
1.115 | 2 | |
0.8592 | 5 | |
0.9954 | 4 | |
1.6372 | 1 |
Approach | Experiment | Ranking Results | ||
---|---|---|---|---|
Approach I | I-1 | Not considered | ||
I-2 | Not considered | given directly | ||
I-3 | Not considered | derived objectively | ||
Approach II | II-1 | |||
II-2 | derived objectively | |||
II-3 | derived objectively |
Approaches | Ranking Results | ||
---|---|---|---|
Extended TOPSIS [51] | Not considered | Not considered | |
Adapted Approach I (This paper) | Not considered | derived objectively | |
Prioritized TOPSIS (Constructed for comparison) | Not considered | derived objectively |
Approaches | Configurations | BUM Functions | Ranking Results |
---|---|---|---|
Approach I | not considered derived objectively | ||
Approach II | derived objectively | ||
Parameters | Characteristics | ||||||||
---|---|---|---|---|---|---|---|---|---|
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Hong, Y.; Qi, X.; Liang, C. Probabilistic Hybrid Linguistic Approaches for Multiple Attribute Group Decision Making with Decision Hesitancy and the Prioritization of Attribute Relationships. Symmetry 2020, 12, 235. https://doi.org/10.3390/sym12020235
Zhang J, Hong Y, Qi X, Liang C. Probabilistic Hybrid Linguistic Approaches for Multiple Attribute Group Decision Making with Decision Hesitancy and the Prioritization of Attribute Relationships. Symmetry. 2020; 12(2):235. https://doi.org/10.3390/sym12020235
Chicago/Turabian StyleZhang, Junling, Ying Hong, Xiaowen Qi, and Changyong Liang. 2020. "Probabilistic Hybrid Linguistic Approaches for Multiple Attribute Group Decision Making with Decision Hesitancy and the Prioritization of Attribute Relationships" Symmetry 12, no. 2: 235. https://doi.org/10.3390/sym12020235
APA StyleZhang, J., Hong, Y., Qi, X., & Liang, C. (2020). Probabilistic Hybrid Linguistic Approaches for Multiple Attribute Group Decision Making with Decision Hesitancy and the Prioritization of Attribute Relationships. Symmetry, 12(2), 235. https://doi.org/10.3390/sym12020235