A Note on Ricci Solitons
Abstract
:1. Introduction
2. Preliminaries
3. Characterizations of Connected Trivial Ricci Solitons
4. Characterizations of Compact Trivial Ricci Solitons
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chow, B.; Lu, P.; Ni, L. Hamilton’s Ricci flow: Graduate studies in Mathematics. In Hamilton’s Ricci Flow: Graduate Studies in Mathematics; AMS Providence: Providence, RI, USA, 2006. [Google Scholar]
- Derdzinski, A. A Myers-type theorem and compact Ricci solitons. Proc. Am. Math. Soc. 2006, 134, 3645–3648. [Google Scholar] [CrossRef] [Green Version]
- Munteanu, O.; Wang, J. Geometry of shrinking Ricci solitons. Comp. Math. 2015, 151, 2273–2300. [Google Scholar] [CrossRef] [Green Version]
- Munteanu, O.; Wang, J. Positively curved shrinking Ricci solitons are compact. J. Diff. Geom. 2017, 106, 499–505. [Google Scholar] [CrossRef] [Green Version]
- Wylie, W. Complete shrinking Ricci solitons have finite fundamental group. Proc. Am. Math. Soc. 2008, 136, 1803–1806. [Google Scholar] [CrossRef] [Green Version]
- Cao, H.-D. Geometry of Ricci solitons. Chin. Ann. Math. 2006, 27B, 121–142. [Google Scholar] [CrossRef]
- Cao, H.-D.; Zhou, D. On complete gradient shrinking Ricci solitons. Diff. Geom. 2010, 85, 175–185. [Google Scholar] [CrossRef]
- Deshmukh, S. Jacobi-type vector fields on Ricci solitons. Bull. Math. Soc. Sci. Math. Roum. 2012, 1, 41–50. [Google Scholar]
- Li, F.; Zhou, J. Rigidity characterization of compact Ricci solitons. J. Korean Math. Soc. 2019, 56. [Google Scholar] [CrossRef]
- Lee, J.M. Riemannian Manifolds. In Riemannian Manifolds; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Donaldson, S. Geometric Analysis. In Lecture Notes for TCC Course “Geometric Analysis”; Available online: http://wwwf.imperial.ac.uk/~skdona/GEOMETRICANALYSIS.PDF (accessed on 16 February 2020).
- Graf, W. Ricci flow gravity. PMC Phys. A 2007, 1, 3. [Google Scholar] [CrossRef] [Green Version]
- Ivancevic, V.G.; Ivancevic, T.T. Ricci flow and nonlinear reaction-diffusion systems in biology, chemistry, and physics. Nonliear Dyn. 2011, 65, 35–54. [Google Scholar] [CrossRef] [Green Version]
- Sandhu, R.S.; Geojou, T.T.; Tamenbaun, A.R. Ricci curvature: An economic indicator for market fragility and system risk. Sci. Adv. 2016, 2, 1501495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Gu, X.; Chan, T.F.; Thompson, P.W.; Yau, S.T. Brain surface conformal parametrization with the Ricci flow. IEEE Trans. Med. Imaging 2012, 10, 251–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deshmukh, S. Almost Ricci solitons isometric to spheres. Intern. J. Geom. Methods Mod. Phys. 2019, 16, 1950073. [Google Scholar] [CrossRef]
- Deshmukh, S.; Chen, B.Y. A note on Yamabe solitons. Balkan J. Geom. Appl. 2018, 23, 37–43. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deshmukh, S.; Alsodais, H. A Note on Ricci Solitons. Symmetry 2020, 12, 289. https://doi.org/10.3390/sym12020289
Deshmukh S, Alsodais H. A Note on Ricci Solitons. Symmetry. 2020; 12(2):289. https://doi.org/10.3390/sym12020289
Chicago/Turabian StyleDeshmukh, Sharief, and Hana Alsodais. 2020. "A Note on Ricci Solitons" Symmetry 12, no. 2: 289. https://doi.org/10.3390/sym12020289
APA StyleDeshmukh, S., & Alsodais, H. (2020). A Note on Ricci Solitons. Symmetry, 12(2), 289. https://doi.org/10.3390/sym12020289