Image Simulations for Strong and Weak Gravitational Lensing
Abstract
:1. Introduction
2. Gravitational Lensing Basics
3. Image Simulations
3.1. Lensing by Galaxy Clusters
3.1.1. Ray Tracing
3.1.2. Observation Pipelines
3.2. Image Simulations in Weak and Strong Lensing Mass Modeling
3.3. Strong Lensing Simulations and Machine Learning Methods
3.4. Image Simulations for Weak Lensing Systematic Errors Characterization
3.5. Synthetic Sky Images and Catalogs
3.6. Image Simulations to Assess the Accuracy of Photometric Redshifts
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Einstein, A. Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie. In Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften; Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften: Berlin, Germany, 1917; pp. 142–152. [Google Scholar]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; W. H. Freeman: New York, NY, USA, 1973. [Google Scholar]
- Carroll, S.M. Spacetime and Geometry. An Introduction to General Relativity; Addison Wesley: San Francisco, CA, USA, 2004. [Google Scholar]
- Dodelson, S. Gravitational Lensing; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar] [CrossRef]
- Schneider, P.; Ehlers, J.; Falco, E.E. Gravitational Lenses; Springer: New York, NY, USA, 1992; p. 112. [Google Scholar] [CrossRef]
- Oguri, M. Strong gravitational lensing of explosive transients. arXiv 2019, arXiv:1907.06830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Treu, T. Strong lensing by galaxies. Annu. Rev. Astron. Astrophys. 2010, 48, 87–125. [Google Scholar] [CrossRef] [Green Version]
- Bartelmann, M.; Maturi, M. Weak gravitational lensing. Scholarpedia 2017, 12, 32440. [Google Scholar] [CrossRef]
- Bartelmann, M.; Schneider, P. Weak gravitational lensing. Phys. Rep. 2001, 340, 291–472. [Google Scholar] [CrossRef] [Green Version]
- Schneider, P. Weak gravitational lensing. arXiv 2005, arXiv:astro-ph/astro-ph/0509252. [Google Scholar]
- Tsapras, Y. Microlensing searches for exoplanets. Geosciences 2018, 8, 365. [Google Scholar] [CrossRef] [Green Version]
- Mao, S. Astrophysical applications of gravitational microlensing. Res. Astron. Astrophys. 2012, 12, 947–972. [Google Scholar] [CrossRef] [Green Version]
- Gaudi, B.S. Microlensing surveys for exoplanets. Annu. Rev. Astron. Astrophys. 2012, 50, 411–453. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, D.H.; Mortonson, M.J.; Eisenstein, D.J.; Hirata, C.; Riess, A.G.; Rozo, E. Observational probes of cosmic acceleration. Phys. Rep. 2013, 530, 87–255. [Google Scholar] [CrossRef] [Green Version]
- Huterer, D.; Shafer, D.L. Dark energy two decades after: Observables, probes, consistency tests. Rep. Prog. Phys. 2017, 81, 016901. [Google Scholar] [CrossRef] [Green Version]
- Abbott, T.M.C.; Abdalla, F.B.; Alarcon, A.; Aleksić, J.; Allam, S.; Allen, S.; Amara, A.; Annis, J.; Asorey, J.; Avila, S.; et al. Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing. Phys. Rev. D 2018, 98, 043526. [Google Scholar] [CrossRef] [Green Version]
- Planck Collaboration; Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; et al. Planck 2018 results. VI. Cosmological parameters. arXiv 2018, arXiv:1807.06209. [Google Scholar]
- Dalal, N.; Kochanek, C.S. Strong lensing constraints on small-scale linear power. arXiv 2002, arXiv:astro-ph/astro-ph/0202290. [Google Scholar]
- Vegetti, S.; Lagattuta, D.J.; McKean, J.P.; Auger, M.W.; Fassnacht, C.D.; Koopmans, L.V.E. Gravitational detection of a low-mass dark satellite galaxy at cosmological distance. Nature 2012, 481, 341–343. [Google Scholar] [CrossRef]
- Nierenberg, A.M.; Treu, T.; Brammer, G.; Peter, A.H.G.; Fassnacht, C.D.; Keeton, C.R.; Kochanek, C.S.; Schmidt, K.B.; Sluse, D.; Wright, S.A. Probing dark matter substructure in the gravitational lens HE 0435-1223 with the WFC3 grism. Mon. Not. R. Astron. Soc. 2017, 471, 2224–2236. [Google Scholar] [CrossRef]
- Hezaveh, Y.D.; Dalal, N.; Marrone, D.P.; Mao, Y.Y.; Morningstar, W.; Wen, D.; Bland ford, R.D.; Carlstrom, J.E.; Fassnacht, C.D.; Holder, G.P.; et al. Detection of lensing substructure using ALMA observations of the dusty galaxy SDP.81. Astrophys. J. 2016, 823, 37. [Google Scholar] [CrossRef] [Green Version]
- Gilman, D.; Birrer, S.; Nierenberg, A.; Treu, T.; Du, X.; Benson, A. Warm dark matter chills out: Constraints on the halo mass function and the free-streaming length of dark matter with eight quadruple-image strong gravitational lenses. Mon. Not. R. Astron. Soc. 2020, 491, 6077–6101. [Google Scholar] [CrossRef] [Green Version]
- Hsueh, J.W.; Enzi, W.; Vegetti, S.; Auger, M.W.; Fassnacht, C.D.; Despali, G.; Koopmans, L.V.E.; McKean, J.P. SHARP—VII. New constraints on the dark matter free-streaming properties and substructure abundance from gravitationally lensed quasars. Mon. Not. R. Astron. Soc. 2020, 492, 3047–3059. [Google Scholar] [CrossRef] [Green Version]
- Bernal, J.L.; Verde, L.; Riess, A.G. The trouble with H0. J. Cosmol. Astropart. Phys. 2016, 2016, 019. [Google Scholar] [CrossRef] [Green Version]
- Pandey, S.; Raveri, M.; Jain, B. A model independent comparison of supernova and strong lensing cosmography: Implications for the Hubble constant tension. arXiv 2019, arXiv:1912.04325. [Google Scholar]
- Shajib, A.J.; Birrer, S.; Treu, T.; Agnello, A.; Buckley-Geer, E.J.; Chan, J.H.H.; Christensen, L.; Lemon, C.; Lin, H.; Millon, M.; et al. STRIDES: A 3.9 per cent measurement of the Hubble constant from the strong lens system DES J0408-5354. arXiv 2019, arXiv:1910.06306. [Google Scholar]
- Wong, K.C.; Suyu, S.H.; Chen, G.C.F.; Rusu, C.E.; Millon, M.; Sluse, D.; Bonvin, V.; Fassnacht, C.D.; Taubenberger, S.; Auger, M.W.; et al. H0LiCOW XIII. A 2.4% measurement of H0 from lensed quasars: 5.3σ tension between early and late-Universe probes. arXiv 2019, arXiv:1907.04869. [Google Scholar]
- Jullo, E.; Natarajan, P.; Kneib, J.P.; D’Aloisio, A.; Limousin, M.; Richard, J.; Schimd, C. Cosmological constraints from strong gravitational lensing in clusters of galaxies. Science 2010, 329, 924–927. [Google Scholar] [CrossRef] [Green Version]
- Magaña, J.; Motta, V.; Cárdenas, V.H.; Verdugo, T.; Jullo, E. A magnified glance into the dark sector: Probing cosmological models with strong lensing in A1689. Astrophys. J. 2015, 813, 69. [Google Scholar] [CrossRef] [Green Version]
- Caminha, G.B.; Grillo, C.; Rosati, P.; Balestra, I.; Karman, W.; Lombardi, M.; Mercurio, A.; Nonino, M.; Tozzi, P.; Zitrin, A.; et al. CLASH-VLT: A highly precise strong lensing model of the galaxy cluster RXC J2248.7-4431 (Abell S1063) and prospects for cosmography. Astron. Astrophys. 2016, 587, A80. [Google Scholar] [CrossRef]
- Acebron, A.; Cibirka, N.; Zitrin, A.; Coe, D.; Agulli, I.; Sharon, K.; Bradač, M.; Frye, B.; Livermore, R.C.; Mahler, G.; et al. RELICS: Strong-lensing Analysis of the Massive Clusters MACS J0308.9+2645 and PLCK G171.9-40.7. Astrophys. J. 2018, 858, 42. [Google Scholar] [CrossRef] [Green Version]
- Grillo, C.; Rosati, P.; Suyu, S.H.; Balestra, I.; Caminha, G.B.; Halkola, A.; Kelly, P.L.; Lombardi, M.; Mercurio, A.; Rodney, S.A.; et al. Measuring the Value of the Hubble Constant “à la Refsdal”. Astrophys. J. 2018, 860, 94. [Google Scholar] [CrossRef] [Green Version]
- Johnson, T.L.; Sharon, K.; Gladders, M.D.; Rigby, J.R.; Bayliss, M.B.; Wuyts, E.; Whitaker, K.E.; Florian, M.; Murray, K.T. Star formation at z = 2.481 in the lensed galaxy SDSS J1110 = 6459. I. Lens modeling and source reconstruction. Astrophys. J. 2017, 843, 78. [Google Scholar] [CrossRef] [Green Version]
- Johnson, T.L.; Rigby, J.R.; Sharon, K.; Gladders, M.D.; Florian, M.; Bayliss, M.B.; Wuyts, E.; Whitaker, K.E.; Livermore, R.; Murray, K.T. Star formation at z = 2.481 in the lensed galaxy SDSS J1110+6459: Star formation down to 30 pc scales. Astrophys. J. Lett. 2017, 843, L21. [Google Scholar] [CrossRef]
- Livermore, R.C.; Finkelstein, S.L.; Lotz, J.M. Directly observing the galaxies likely responsible for reionization. Astrophys. J. 2017, 835, 113. [Google Scholar] [CrossRef]
- Aylor, K.; Joy, M.; Knox, L.; Millea, M.; Raghunathan, S.; Wu, W.L.K. Sounds discordant: Classical distance ladder and ΛCDM-based determinations of the cosmological sound horizon. Astrophys. J. 2019, 874, 4. [Google Scholar] [CrossRef] [Green Version]
- Poulin, V.; Smith, T.L.; Karwal, T.; Kamionkowski, M. Early dark energy can resolve the hubble tension. Phys. Rev. Lett. 2019, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Valentino, E.; Melchiorri, A.; Mena, O. Can interacting dark energy solve the H0 tension? Phys. Rev. D 2017, 96. [Google Scholar] [CrossRef] [Green Version]
- Kilbinger, M. Cosmology with cosmic shear observations: A review. Rep. Prog. Phys. 2015, 78, 086901. [Google Scholar] [CrossRef] [Green Version]
- Munshi, D.; Valageas, P.; Vanwaerbeke, L.; Heavens, A. Cosmology with weak lensing surveys. Phys. Rep. 2008, 462, 67–121. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, H.; Jain, B. Weak gravitational lensing and its cosmological applications. Annu. Rev. Nucl. Part. Syst. 2008, 58, 99–123. [Google Scholar] [CrossRef] [Green Version]
- Gunn, J.E. On the propagation of light in inhomogeneous cosmologies. I. Mean effects. Astrophys. J. 1967, 150, 737. [Google Scholar] [CrossRef]
- Alcock, C.; Allsman, R.A.; Alves, D.R.; Axelrod, T.S.; Becker, A.C.; Bennett, D.P.; Cook, K.H.; Dalal, N.; Drake, A.J.; Freeman, K.C.; et al. The MACHO project: Microlensing results from 5.7 years of large magellanic cloud observations. Astrophys. J. 2000, 542, 281–307. [Google Scholar] [CrossRef] [Green Version]
- Press, W.H.; Gunn, J.E. Method for detecting a cosmological density of condensed objects. Astrophys. J. 1973, 185, 397–412. [Google Scholar] [CrossRef]
- Jouvel, S.; Host, O.; Lahav, O.; Seitz, S.; Molino, A.; Coe, D.; Postman, M.; Moustakas, L.; Benìtez, N.; Rosati, P.; et al. CLASH: Photometric redshifts with 16 HST bands in galaxy cluster fields. Astron. Astrophys. 2014, 562, A86. [Google Scholar] [CrossRef]
- Molino, A.; Benítez, N.; Ascaso, B.; Coe, D.; Postman, M.; Jouvel, S.; Host, O.; Lahav, O.; Seitz, S.; Medezinski, E.; et al. CLASH: Accurate photometric redshifts with 14 HST bands in massive galaxy cluster cores. Mon. Not. R. Astron. Soc. 2017, 470, 95–113. [Google Scholar] [CrossRef]
- González, J.D.R.; Sharon, K.; Mahler, G. An evaluation of 10 lensing models of the frontier fields cluster MACS J0416.1-2403. Astrophys. J. 2018, 863, 60. [Google Scholar] [CrossRef]
- DESI Collaboration; Aghamousa, A.; Aguilar, J.; Ahlen, S.; Alam, S.; Allen, L.E.; Allende Prieto, C.; Annis, J.; Bailey, S.; Balland, C.; et al. The DESI Experiment Part I: Science, Targeting, and Survey Design. arXiv 2016, arXiv:1611.00036. [Google Scholar]
- Takada, M.; Ellis, R.S.; Chiba, M.; Greene, J.E.; Aihara, H.; Arimoto, N.; Bundy, K.; Cohen, J.; Doré, O.; Graves, G.; et al. Extragalactic science, cosmology, and Galactic archaeology with the Subaru Prime Focus Spectrograph. Publ. Astron. Soc. Jpn. 2014, 66, R1. [Google Scholar] [CrossRef]
- Ivezić, Ž.; Kahn, S.M.; Tyson, J.A.; Abel, B.; Acosta, E.; Allsman, R.; Alonso, D.; AlSayyad, Y.; Anderson, S.F.; Andrew, J.; et al. LSST: From science drivers to reference design and anticipated data products. Astrophys. J. 2019, 873, 111. [Google Scholar] [CrossRef]
- Laureijs, R.; Amiaux, J.; Arduini, S.; Auguères, J.L.; Brinchmann, J.; Cole, R.; Cropper, M.; Dabin, C.; Duvet, L.; Ealet, A.; et al. Euclid definition study report. arXiv 2011, arXiv:1110.3193. [Google Scholar]
- Spergel, D.; Gehrels, N.; Baltay, C.; Bennett, D.; Breckinridge, J.; Donahue, M.; Dressler, A.; Gaudi, B.S.; Greene, T.; Guyon, O.; et al. Wide-field infrarred survey telescope-astrophysics focused telescope assets WFIRST-AFTA 2015 report. arXiv 2015, arXiv:1503.03757. [Google Scholar]
- Bartelmann, M. Gravitational lensing. Class. Quantum Gravity 2010, 27, 233001. [Google Scholar] [CrossRef] [Green Version]
- Tessore, N.; Benton Metcalf, R. The elliptical power law profile lens. Astron. Astrophys. 2015, 580, A79. [Google Scholar] [CrossRef]
- Giocoli, C.; Meneghetti, M.; Bartelmann, M.; Moscardini, L.; Boldrin, M. MOKA: A new tool for strong lensing studies. Mon. Not. R. Astron. Soc. 2012, 421, 3343–3355. [Google Scholar] [CrossRef]
- Springel, V.; White, S.D.M.; Jenkins, A.; Frenk, C.S.; Yoshida, N.; Gao, L.; Navarro, J.; Thacker, R.; Croton, D.; Helly, J.; et al. Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 2005, 435, 629–636. [Google Scholar] [CrossRef] [PubMed]
- Angulo, R.E.; Springel, V.; White, S.D.M.; Jenkins, A.; Baugh, C.M.; Frenk, C.S. Scaling relations for galaxy clusters in the Millennium-XXL simulation. Mon. Not. R. Astron. Soc. 2012, 426, 2046–2062. [Google Scholar] [CrossRef] [Green Version]
- Skillman, S.W.; Warren, M.S.; Turk, M.J.; Wechsler, R.H.; Holz, D.E.; Sutter, P.M. Dark sky simulations: Early data release. arXiv 2014, arXiv:astro-ph.CO/1407.2600. [Google Scholar]
- Habib, S.; Pope, A.; Finkel, H.; Frontiere, N.; Heitmann, K.; Daniel, D.; Fasel, P.; Morozov, V.; Zagaris, G.; Peterka, T.; et al. HACC: Simulating sky surveys on state-of-the-art supercomputing architectures. New Astron. 2016, 42, 49–65. [Google Scholar] [CrossRef] [Green Version]
- Potter, D.; Stadel, J.; Teyssier, R. PKDGRAV3: Beyond trillion particle cosmological simulations for the next era of galaxy surveys. arXiv 2016, arXiv:astro-ph.IM/1609.08621. [Google Scholar] [CrossRef]
- Vogelsberger, M.; Genel, S.; Springel, V.; Torrey, P.; Sijacki, D.; Xu, D.; Snyder, G.; Bird, S.; Nelson, D.; Hernquist, L. Properties of galaxies reproduced by a hydrodynamic simulation. Nature 2014, 509, 177–182. [Google Scholar] [CrossRef] [Green Version]
- Schaye, J.; Crain, R.A.; Bower, R.G.; Furlong, M.; Schaller, M.; Theuns, T.; Dalla Vecchia, C.; Frenk, C.S.; McCarthy, I.G.; Helly, J.C.; et al. The EAGLE project: Simulating the evolution and assembly of galaxies and their environments. Mon. Not. R. Astron. Soc. 2014, 446, 521–554. [Google Scholar] [CrossRef]
- Davé, R.; Thompson, R.; Hopkins, P.F. Mufasa: Galaxy formation simulations with meshless hydrodynamics. Mon. Not. R. Astron. Soc. 2016, 462, 3265–3284. [Google Scholar] [CrossRef]
- Sawala, T.; Frenk, C.S.; Fattahi, A.; Navarro, J.F.; Bower, R.G.; Crain, R.A.; Vecchia, C.D.; Furlong, M.; Helly, J.C.; Jenkins, A.; et al. The APOSTLE simulations: Solutions to the Local Group’s cosmic puzzles. Mon. Not. R. Astron. Soc. 2016, 457, 1931–1943. [Google Scholar] [CrossRef] [Green Version]
- Tremmel, M.; Quinn, T.R.; Ricarte, A.; Babul, A.; Chadayammuri, U.; Natarajan, P.; Nagai, D.; Pontzen, A.; Volonteri, M. Introducingromulusc: A cosmological simulation of a galaxy cluster with an unprecedented resolution. Mon. Not. R. Astron. Soc. 2018, 483, 3336–3362. [Google Scholar] [CrossRef]
- Vogelsberger, M.; Marinacci, F.; Torrey, P.; Puchwein, E. Cosmological simulations of galaxy formation. arXiv 2019, arXiv:astro-ph.GA/1909.07976. [Google Scholar] [CrossRef] [Green Version]
- Gardini, A.; Rasia, E.; Mazzotta, P.; Tormen, G.; De Grandi, S.; Moscardini, L. Simulating Chandra observations of galaxy clusters. Mon. Not. R. Astron. Soc. 2004, 351, 505–514. [Google Scholar] [CrossRef] [Green Version]
- Rasia, E.; Mazzotta, P.; Borgani, S.; Moscardini, L.; Dolag, K.; Tormen, G.; Diaferio, A.; Murante, G. Mismatch between X-ray and emission-weighted temperatures in galaxy clusters: Cosmological implications. Astrophys. J. 2004, 618, L1–L4. [Google Scholar] [CrossRef] [Green Version]
- Plazas, A.A.; Meneghetti, M.; Maturi, M.; Rhodes, J. Image simulations for gravitational lensing with SKYLENS. Mon. Not. R. Astron. Soc. 2019, 482, 2823–2832. [Google Scholar] [CrossRef]
- Killedar, M.; Lasky, P.D.; Lewis, G.F.; Fluke, C.J. Gravitational lensing with three-dimensional ray tracing. Mon. Not. R. Astron. Soc. 2011, 420, 155–169. [Google Scholar] [CrossRef] [Green Version]
- Meneghetti, M.; Melchior, P.; Grazian, A.; De Lucia, G.; Dolag, K.; Bartelmann, M.; Heymans, C.; Moscardini, L.; Radovich, M. Realistic simulations of gravitational lensing by galaxy clusters: Extracting arc parameters from mock DUNE images. Astron. Astrophys. 2008, 482, 403–418. [Google Scholar] [CrossRef] [Green Version]
- Meneghetti, M.; Rasia, E.; Merten, J.; Bellagamba, F.; Ettori, S.; Mazzotta, P.; Dolag, K.; Marri, S. Weighing simulated galaxy clusters using lensing and X-ray. Astron. Astrophys. 2010, 514, A93. [Google Scholar] [CrossRef]
- Li, N.; Gladders, M.D.; Rangel, E.M.; Florian, M.K.; Bleem, L.E.; Heitmann, K.; Habib, S.; Fasel, P. PICS: Simulations of strong gravitational lensing in galaxy clusters. Astrophys. J. 2016, 828, 54. [Google Scholar] [CrossRef] [Green Version]
- Metcalf, R.B.; Petkova, M. Glamer—I. A code for gravitational lensing simulations with adaptive mesh refinement. Mon. Not. R. Astron. Soc. 2014, 445, 1942–1953. [Google Scholar] [CrossRef] [Green Version]
- Petkova, M.; Metcalf, R.B.; Giocoli, C. Glamer—II. Multiple-plane gravitational lensing. Mon. Not. R. Astron. Soc. 2014, 445, 1954–1966. [Google Scholar] [CrossRef] [Green Version]
- Rasia, E.; Meneghetti, M.; Martino, R.; Borgani, S.; Bonafede, A.; Dolag, K.; Ettori, S.; Fabjan, D.; Giocoli, C.; Mazzotta, P.; et al. Lensing and X-ray mass estimates of clusters (simulations). New J. Phys. 2012, 14, 055018. [Google Scholar] [CrossRef]
- Illingworth, G.D.; Magee, D.; Oesch, P.A.; Bouwens, R.J.; Labbé, I.; Stiavelli, M.; Van Dokkum, P.G.; Franx, M.; Trenti, M.; Carollo, C.M.; et al. The HST eXtreme deep field (XDF): Combining all ACS and WFC3/IR data on the HUDF region into the deepest field ever. Astrophys. J. 2013, 209, 6. [Google Scholar] [CrossRef] [Green Version]
- Grazian, A.; Fontana, A.; De Santis, C.; Gallozzi, S.; Giallongo, E.; Di Pangrazio, F. The large binocular camera image simulator. Publ. Astron. Soc. Pac. 2004, 116, 750–761. [Google Scholar] [CrossRef]
- Plazas, A.A.; Bernstein, G.M.; Sheldon, E.S. On-sky measurements of the transverse electric fields’ effects in the dark energy camera CCDs. Publ. Astron. Soc. Pac. 2014, 126, 750–760. [Google Scholar] [CrossRef] [Green Version]
- Jullo, E.; Kneib, J.P.; Limousin, M.; Elíasdóttir, Á.; Marshall, P.J.; Verdugo, T. A Bayesian approach to strong lensing modelling of galaxy clusters. New J. Phys. 2007, 9, 447. [Google Scholar] [CrossRef]
- Caminha, G.B.; Rosati, P.; Grillo, C.; Rosani, G.; Caputi, K.I.; Meneghetti, M.; Mercurio, A.; Balestra, I.; Bergamini, P.; Biviano, A.; et al. Strong lensing models of eight CLASH clusters from extensive spectroscopy: Accurate total mass reconstructions in the cores. Astron. Astrophys. 2019, 632, A36. [Google Scholar] [CrossRef]
- Postman, M.; Coe, D.; Benítez, N.; Bradley, L.; Broadhurst, T.; Donahue, M.; Ford, H.; Graur, O.; Graves, G.; Jouvel, S.; et al. The cluster lensing and supernova survey with Hubble: An overview. Astrophys. J. 2012, 199, 25. [Google Scholar] [CrossRef]
- Lotz, J.M.; Koekemoer, A.; Coe, D.; Grogin, N.; Capak, P.; Mack, J.; Anderson, J.; Avila, R.; Barker, E.A.; Borncamp, D.; et al. The frontier fields: Survey design and initial results. Astrophys. J. 2017, 837, 97. [Google Scholar] [CrossRef]
- Koekemoer, A.M.; Mack, J.; Lotz, J.M.; Anderson, J.; Avila, R.J.; Barker, E.A.; Borncamp, D.; Gunning, H.C.; Hilbert, B.; Khandrika, H.G.; et al. The HST frontier fields: High-level science data products for the first 4 completed clusters, and for the last 2 clusters currently in progress. Am. Astron. Soc. Meet. Abstr. 2016, 228, 315.02. [Google Scholar]
- Smith, G.P.; Ebeling, H.; Limousin, M.; Kneib, J.P.; Swinbank, A.M.; Ma, C.J.; Jauzac, M.; Richard, J.; Jullo, E.; Sand, D.J.; et al. Hubble Space Telescope observations of a spectacular new strong-lensing galaxy cluster: MACS J1149.5+2223 at z = 0.544. Astrophys. J. Lett. 2009, 707, L163–L168. [Google Scholar] [CrossRef]
- Zitrin, A.; Broadhurst, T. Discovery of the largest known lensed images formed by a critically convergent lensing cluster. Astrophys. J. 2009, 703, L132–L136. [Google Scholar] [CrossRef]
- Meneghetti, M.; Natarajan, P.; Coe, D.; Contini, E.; De Lucia, G.; Giocoli, C.; Acebron, A.; Borgani, S.; Bradac, M.; Diego, J.M.; et al. The Frontier Fields lens modelling comparison project. Mon. Not. R. Astron. Soc. 2017, 472, 3177–3216. [Google Scholar] [CrossRef]
- Collett, T.E. The population of galaxy-galaxy strong lenses in forthcoming optical imaging surveys. Astrophys. J. 2015, 811, 20. [Google Scholar] [CrossRef]
- Diehl, H.T.; Buckley-Geer, E.J.; Lindgren, K.A.; Nord, B.; Gaitsch, H.; Gaitsch, S.; Lin, H.; Allam, S.; Collett, T.E.; Furlanetto, C.; et al. The DES bright arcs survey: Hundreds of candidate strongly lensed galaxy systems from the Dark Energy Survey Science Verification and Year 1 observations. Astrophys. J. 2017, 232, 15. [Google Scholar] [CrossRef] [Green Version]
- Marshall, P.J.; Hogg, D.W.; Moustakas, L.A.; Fassnacht, C.D.; Bradač, M.; Schrabback, T.; Blandford, R.D. Automated detection of galaxy-scale gravitational lenses in high-resolution imaging data. Astrophys. J. 2009, 694, 924–942. [Google Scholar] [CrossRef]
- Chan, J.H.H.; Suyu, S.H.; Chiueh, T.; More, A.; Marshall, P.J.; Coupon, J.; Oguri, M.; Price, P. Chitah: Strong-gravitational-lens hunter in imaging surveys. Astrophys. J. 2015, 807, 138. [Google Scholar] [CrossRef] [Green Version]
- Marshall, P.J.; Lintott, C.J.; Fletcher, L.N. Ideas for citizen science in astronomy. Annu. Rev. Astron. Astrophys. 2015, 53, 247–278. [Google Scholar] [CrossRef] [Green Version]
- More, A.; Verma, A.; Marshall, P.J.; More, S.; Baeten, E.; Wilcox, J.; Macmillan, C.; Cornen, C.; Kapadia, A.; Parrish, M.; et al. Space Warps—II. New gravitational lens candidates from the CFHTLS discovered through citizen science. Mon. Not. R. Astron. Soc. 2015, 455, 1191–1210. [Google Scholar] [CrossRef] [Green Version]
- Lanusse, F.; Ma, Q.; Li, N.; Collett, T.E.; Li, C.L.; Ravanbakhsh, S.; Mandelbaum, R.; Póczos, B. CMU DeepLens: Deep learning for automatic image-based galaxy–galaxy strong lens finding. Mon. Not. R. Astron. Soc. 2017, 473, 3895–3906. [Google Scholar] [CrossRef] [Green Version]
- Hezaveh, Y.D.; Levasseur, L.P.; Marshall, P.J. Fast automated analysis of strong gravitational lenses with convolutional neural networks. Nature 2017, 548, 555–557. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, C.; Collett, T.; Glazebrook, K.; Buckley-Geer, E.; Diehl, H.T.; Lin, H.; McCarthy, C.; Qin, A.K.; Odden, C.; Escudero, M.C.; et al. An extended Catalog of galaxy–galaxy strong gravitational lenses discovered in DES using convolutional neural networks. Astrophys. J. Suppl. Ser. 2019, 243, 17. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, C.; Collett, T.; Glazebrook, K.; McCarthy, C.; Qin, A.K.; Abbott, T.M.C.; Abdalla, F.B.; Annis, J.; Avila, S.; Bechtol, K.; et al. Finding high-redshift strong lenses in DES using convolutional neural networks. Mon. Not. R. Astron. Soc. 2019, 484, 5330–5349. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, C.; Glazebrook, K.; Collett, T.; More, A.; McCarthy, C. Finding strong lenses in CFHTLS using convolutional neural networks. Mon. Not. R. Astron. Soc. 2017, 471, 167–181. [Google Scholar] [CrossRef]
- LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1989, 1, 541–551. [Google Scholar] [CrossRef]
- Petrillo, C.E.; Tortora, C.; Chatterjee, S.; Vernardos, G.; Koopmans, L.V.E.; Verdoes Kleijn, G.; Napolitano, N.R.; Covone, G.; Schneider, P.; Grado, A.; et al. Finding strong gravitational lenses in the Kilo Degree Survey with Convolutional Neural Networks. Mon. Not. R. Astron. Soc. 2017, 472, 1129–1150. [Google Scholar] [CrossRef] [Green Version]
- Petrillo, C.E.; Tortora, C.; Vernardos, G.; Koopmans, L.V.E.; Verdoes Kleijn, G.; Bilicki, M.; Napolitano, N.R.; Chatterjee, S.; Covone, G.; Dvornik, A.; et al. LinKS: Discovering galaxy-scale strong lenses in the Kilo-Degree Survey using convolutional neural networks. Mon. Not. R. Astron. Soc. 2019, 484, 3879–3896. [Google Scholar] [CrossRef]
- Metcalf, R.B.; Meneghetti, M.; Avestruz, C.; Bellagamba, F.; Bom, C.R.; Bertin, E.; Cabanac, R.; Courbin, F.; Davies, A.; Decencière, E.; et al. The strong gravitational lens finding challenge. Astron. Astrophys. 2019, 625, A119. [Google Scholar] [CrossRef]
- Mandelbaum, R. Weak lensing for precision cosmology. Annu. Rev. Astron. Astrophys. 2018, 56, 393–433. [Google Scholar] [CrossRef] [Green Version]
- Heymans, C.; Van Waerbeke, L.; Bacon, D.; Berge, J.; Bernstein, G.; Bertin, E.; Bridle, S.; Brown, M.L.; Clowe, D.; Dahle, H.; et al. The Shear Testing Programme—I. Weak lensing analysis of simulated ground-based observations. Mon. Not. R. Astron. Soc. 2006, 368, 1323–1339. [Google Scholar] [CrossRef]
- Bridle, S.; Balan, S.T.; Bethge, M.; Gentile, M.; Harmeling, S.; Heymans, C.; Hirsch, M.; Hosseini, R.; Jarvis, M.; Kirk, D.; et al. Results of the GREAT08 Challenge: An image analysis competition for cosmological lensing. Mon. Not. R. Astron. Soc. 2010, 405. [Google Scholar] [CrossRef] [Green Version]
- Kitching, T.D.; Balan, S.T.; Bridle, S.; Cantale, N.; Courbin, F.; Eifler, T.; Gentile, M.; Gill, M.S.S.; Harmeling, S.; Heymans, C.; et al. Image analysis for cosmology: Results from the GREAT10 Galaxy Challenge. Mon. Not. R. Astron. Soc. 2012, 423, 3163–3208. [Google Scholar] [CrossRef] [Green Version]
- Mandelbaum, R.; Rowe, B.; Bosch, J.; Chang, C.; Courbin, F.; Gill, M.; Jarvis, M.; Kannawadi, A.; Kacprzak, T.; Lackner, C.; et al. The third gravitational lensing accuracy testing (great3) challenge handbook. Astrophys. J. Suppl. Ser. 2014, 212, 5. [Google Scholar] [CrossRef]
- Rowe, B.T.P.; Jarvis, M.; Mandelbaum, R.; Bernstein, G.M.; Bosch, J.; Simet, M.; Meyers, J.E.; Kacprzak, T.; Nakajima, R.; Zuntz, J.; et al. GALSIM: The modular galaxy image simulation toolkit. Astron. Comput. 2015, 10, 121–150. [Google Scholar] [CrossRef] [Green Version]
- Plazas, A.A.; Shapiro, C.; Kannawadi, A.; Mandelbaum, R.; Rhodes, J.; Smith, R. The effect of detector nonlinearity on WFIRSTPSF profiles for weak gravitational lensing measurements. Publ. Astron. Soc. Pac. 2016, 128, 104001. [Google Scholar] [CrossRef] [Green Version]
- Plazas, A.A.; Shapiro, C.; Smith, R.; Huff, E.; Rhodes, J. Laboratory measurement of the brighter-fatter effect in an H2RG infrared detector. Publ. Astron. Soc. Pac. 2018, 130, 065004. [Google Scholar] [CrossRef] [Green Version]
- Kannawadi, A.; Shapiro, C.A.; Mandelbaum, R.; Hirata, C.M.; Kruk, J.W.; Rhodes, J.D. The impact of interpixel capacitance on WFIRST PSFs. arXiv 2015, arXiv:astro-ph.IM/1512.01570. [Google Scholar]
- Gruen, D.; Bernstein, G.M.; Jarvis, M.; Rowe, B.; Vikram, V.; Plazas, A.A.; Seitz, S. Characterization and correction of charge-induced pixel shifts in DECam. J. Instrum. 2015, 10, C5032. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.H.; Tan, B.; Mandelbaum, R.; Hirata, C.M. The impact of light polarization effects on weak lensing systematics. arXiv 2019, arXiv:astro-ph.IM/1910.05063. [Google Scholar]
- Kamath, S.; Meyers, J.E.; Burchat, P.R. Shear measurement bias due to spatially varying spectral energy distributions in galaxies. arXiv 2019, arXiv:astro-ph.CO/1907.04459. [Google Scholar] [CrossRef]
- Suchyta, E.; Huff, E.M.; Aleksić, J.; Melchior, P.; Jouvel, S.; MacCrann, N.; Ross, A.J.; Crocce, M.; Gaztanaga, E.; Honscheid, K.; et al. No galaxy left behind: Accurate measurements with the faintest objects in the Dark Energy Survey. Mon. Not. R. Astron. Soc. 2016, 457, 786–808. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Leauthaud, A.; Murata, R.; Bosch, J.; Price, P.; Lupton, R.; Mandelbaum, R.; Lackner, C.; Bickerton, S.; Miyazaki, S.; et al. Characterization and photometric performance of the Hyper Suprime-Cam Software Pipeline. Publ. Astron. Soc. Jpn. 2017, 70. [Google Scholar] [CrossRef] [Green Version]
- Sheldon, E.S.; Becker, M.R.; MacCrann, N.; Jarvis, M. Metadetection: Mitigating shear-dependent object detection biases with metacalibration. arXiv 2019, arXiv:1911.02505. [Google Scholar]
- Samuroff, S.; Bridle, S.L.; Zuntz, J.; Troxel, M.A.; Gruen, D.; Rollins, R.P.; Bernstein, G.M.; Eifler, T.F.; Huff, E.M.; Kacprzak, T.; et al. Dark Energy Survey Year 1 results: The impact of galaxy neighbours on weak lensing cosmology with IM3SHAPE. Mon. Not. R. Astron. Soc. 2018, 475, 4524–4543. [Google Scholar] [CrossRef]
- Bernstein, G.M.; Armstrong, R.; Krawiec, C.; March, M.C. An accurate and practical method for inference of weak gravitational lensing from galaxy images. Mon. Not. R. Astron. Soc. 2016, 459, 4467–4484. [Google Scholar] [CrossRef] [Green Version]
- Plazas, A.A. Weak Gravitational Lensing Systematic Errors in the Dark Energy Survey. Ph.D. Thesis, University of Pennsylvania, Philadelphia, PA, USA, 2012. [Google Scholar]
- Troxel, M.A.; Long, H.; Hirata, C.M.; Choi, A.; Jarvis, M.; Mandelbaum, R.; Wang, K.; Yamamoto, M.; Hemmati, S.; Capak, P. A synthetic WFIRST high-latitude imaging survey: Simulation suite and the impact of wavefront errors on weak gravitational lensing. arXiv 2019, arXiv:astro-ph.IM/1912.09481. [Google Scholar]
- Doré, O.; Hirata, C.; Wang, Y.; Weinberg, D.; Baronchelli, I.; Benson, A.; Capak, P.; Choi, A.; Eifler, T.; Hemmati, S.; et al. WFIRST science investigation team “cosmology with the high latitude survey” annual report 2017. arXiv 2018, arXiv:astro-ph.CO/1804.03628. [Google Scholar]
- Tassev, S.; Zaldarriaga, M.; Eisenstein, D.J. Solving large scale structure in ten easy steps with COLA. J. Cosmol. Astropart. Phys. 2013, 2013, 036. [Google Scholar] [CrossRef] [Green Version]
- Izard, A.; Fosalba, P.; Crocce, M. ICE-COLA: Fast simulations for weak lensing observables. Mon. Not. R. Astron. Soc. 2017, 473, 3051–3061. [Google Scholar] [CrossRef] [Green Version]
- DeRose, J.; Wechsler, R.H.; Becker, M.R.; Busha, M.T.; Rykoff, E.S.; MacCrann, N.; Erickson, B.; Evrard, A.E.; Kravtsov, A.; Gruen, D.; et al. The buzzard flock: Dark energy survey synthetic sky catalogs. arXiv 2019, arXiv:1901.02401. [Google Scholar]
- Becker, M.R. CALCLENS: Weak Lensing Simulations for Large-Area Sky Surveys and Second-Order Effects in Cosmic Shear Power Spectra. Ph.D. Thesis, The University of Chicago, Chicago, IL, USA, 2013. [Google Scholar]
- Rykoff, E.S.; Rozo, E.; Busha, M.T.; Cunha, C.E.; Finoguenov, A.; Evrard, A.; Hao, J.; Koester, B.P.; Leauthaud, A.; Nord, B.; et al. redMaPPer. I. algorithm and sdss DR8 catalog. Astrophys. J. 2014, 785, 104. [Google Scholar] [CrossRef]
- Fosalba, P.; Crocce, M.; Gaztañaga, E.; Castander, F.J. The MICE grand challenge lightcone simulation—I. Dark matter clustering. Mon. Not. R. Astron. Soc. 2015, 448, 2987–3000. [Google Scholar] [CrossRef]
- Takahashi, R.; Hamana, T.; Shirasaki, M.; Namikawa, T.; Nishimichi, T.; Osato, K.; Shiroyama, K. Full-sky gravitational lensing simulation for large-area galaxy surveys and cosmic microwave background experiments. Astrophys. J. 2017, 850, 24. [Google Scholar] [CrossRef] [Green Version]
- Harnois-Deraps, J.; Pen, U.L.; Iliev, I.T.; Merz, H.; Emberson, J.D.; Desjacques, V. High-performance P3M N-body code: CUBEP3M. Mon. Not. R. Astron. Soc. 2013, 436, 540–559. [Google Scholar] [CrossRef]
- Bruderer, C.; Chang, C.; Refregier, A.; Amara, A.; Bergé, J.; Gamper, L. Calibrated ultra fast image simulations for the dark energy survey. Astrophys. J. 2016, 817, 25. [Google Scholar] [CrossRef] [Green Version]
- Bergé, J.; Gamper, L.; Réfrégier, A.R.; Amara, A. An Ultra Fast Image Generator (UFIG) for wide-field astronomy. Astron. Comput. 2013, 1, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Refregier, A.; Amara, A. A way forward for Cosmic Shear: Monte-Carlo Control Loops. Phys. Dark Universe 2014, 3, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Abbott, T.; Abdalla, F.; Allam, S.; Amara, A.; Annis, J.; Armstrong, R.; Bacon, D.; Banerji, M.; Bauer, A.; Baxter, E.; et al. Cosmology from cosmic shear with Dark Energy Survey Science Verification data. Phys. Rev. D 2016, 94. [Google Scholar] [CrossRef] [Green Version]
- Kacprzak, T.; Herbel, J.; Nicola, A.; Sgier, R.; Tarsitano, F.; Bruderer, C.; Amara, A.; Refregier, A.; Bridle, S.L.; Drlica-Wagner, A.; et al. Monte Carlo Control Loops for cosmic shear cosmology with DES Year 1. arXiv 2019, arXiv:1906.01018. [Google Scholar]
- Smith, M.J.; Geach, J.E. Generative deep fields: Arbitrarily sized, random synthetic astronomical images through deep learning. arXiv 2019, arXiv:1904.10286. [Google Scholar] [CrossRef]
- Jurić, M.; Kantor, J.; Lim, K.T.; Lupton, R.H.; Dubois-Felsmann, G.; Jenness, T.; Axelrod, T.S.; Aleksić, J.; Allsman, R.A.; AlSayyad, Y.; et al. The LSST data management system. arXiv 2015, arXiv:1512.07914. [Google Scholar]
- Ivezic, Z.; Tyson, J.A.; Abel, B.; Acosta, E.; Allsman, R.; AlSayyad, Y.; Anderson, S.F.; Andrew, J.; Angel, R.; Angeli, G.; et al. LSST: From science drivers to reference design and anticipated data products. arXiv 2008, arXiv:0805.2366. [Google Scholar] [CrossRef]
- Sánchez, F.J.; Walter, C.W.; Awan, H.; Chiang, J.; Daniel, S.F.; Gawiser, E.; Glanzman, T.; Kirkby, D.P.; Mandelbaum, R.; Slosar, A.; et al. The LSST DESC data challenge 1: Generation and analysis of synthetic images for next generation surveys. arXiv 2020, arXiv:2001.00941. [Google Scholar]
- Korytov, D.; Hearin, A.; Kovacs, E.; Larsen, P.; Rangel, E.; Hollowed, J.; Benson, A.J.; Heitmann, K.; Mao, Y.Y.; Bahmanyar, A.; et al. CosmoDC2: A synthetic sky catalog for dark energy science with LSST. arXiv 2019, arXiv:1907.06530. [Google Scholar] [CrossRef]
- Peterson, J.R.; Jernigan, J.G.; Kahn, S.M.; Rasmussen, A.P.; Peng, E.; Ahmad, Z.; Bankert, J.; Chang, C.; Claver, C.; Gilmore, D.K.; et al. Simulation of astronomical images from optical survey telescopes using a comprehensive photon monte carlo approach. Astrophys. J. Suppl. Ser. 2015, 218, 14. [Google Scholar] [CrossRef] [Green Version]
- Albrecht, A.; Bernstein, G.; Cahn, R.; Freedman, W.L.; Hewitt, J.; Hu, W.; Huth, J.; Kamionkowski, M.; Kolb, E.W.; Knox, L.; et al. Report of the Dark Energy Task Force. arXiv 2006, arXiv:astro-ph/0609591. [Google Scholar]
- Hoyle, B.; Gruen, D.; Bernstein, G.M.; Rau, M.M.; De Vicente, J.; Hartley, W.G.; Gaztanaga, E.; DeRose, J.; Troxel, M.A.; Davis, C.; et al. Dark Energy Survey Year 1 Results: Redshift distributions of the weak-lensing source galaxies. Mon. Not. R. Astron. Soc. 2018, 478, 592–610. [Google Scholar] [CrossRef] [Green Version]
- Bellagamba, F.; Meneghetti, M.; Moscardini, L.; Bolzonella, M. Accuracy of photometric redshifts for future weak lensing surveys from space. Mon. Not. R. Astron. Soc. 2012, 422, 553–562. [Google Scholar] [CrossRef]
- Benítez, N. Bayesian photometric redshift estimation. Astrophys. J. 2000, 536, 571–583. [Google Scholar] [CrossRef] [Green Version]
- Bonnett, C.; Troxel, M.; Hartley, W.; Amara, A.; Leistedt, B.; Becker, M.; Bernstein, G.; Bridle, S.; Bruderer, C.; Busha, M.; et al. Redshift distributions of galaxies in the Dark Energy Survey Science Verification shear catalogue and implications for weak lensing. Phys. Rev. D 2016, 94. [Google Scholar] [CrossRef] [Green Version]
- Carrasco Kind, M.; Brunner, R.J. TPZ: Photometric redshift PDFs and ancillary information by using prediction trees and random forests. Mon. Not. R. Astron. Soc. 2013, 432, 1483–1501. [Google Scholar] [CrossRef] [Green Version]
- Gerdes, D.W.; Sypniewski, A.J.; McKay, T.A.; Hao, J.; Weis, M.R.; Wechsler, R.H.; Busha, M.T. ArborZ: Photometric redshifts using boosted decision trees. Astrophys. J. 2010, 715, 823–832. [Google Scholar] [CrossRef] [Green Version]
- Troxel, M.; MacCrann, N.; Zuntz, J.; Eifler, T.; Krause, E.; Dodelson, S.; Gruen, D.; Blazek, J.; Friedrich, O.; Samuroff, S.; et al. Dark Energy Survey Year 1 results: Cosmological constraints from cosmic shear. Phys. Rev. D 2018, 98. [Google Scholar] [CrossRef] [Green Version]
- Schaan, E.; Krause, E.; Eifler, T.; Doré, O.; Miyatake, H.; Rhodes, J.; Spergel, D.N. Looking through the same lens: Shear calibration for LSST, Euclid, and WFIRST with stage 4 CMB lensing. Phys. Rev. D 2017, 95. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
A. Plazas, A. Image Simulations for Strong and Weak Gravitational Lensing. Symmetry 2020, 12, 494. https://doi.org/10.3390/sym12040494
A. Plazas A. Image Simulations for Strong and Weak Gravitational Lensing. Symmetry. 2020; 12(4):494. https://doi.org/10.3390/sym12040494
Chicago/Turabian StyleA. Plazas, Andrés. 2020. "Image Simulations for Strong and Weak Gravitational Lensing" Symmetry 12, no. 4: 494. https://doi.org/10.3390/sym12040494
APA StyleA. Plazas, A. (2020). Image Simulations for Strong and Weak Gravitational Lensing. Symmetry, 12(4), 494. https://doi.org/10.3390/sym12040494