MGD Dirac Stars
Abstract
:1. Introduction
2. The MGD Setup and Fluid Branes
3. Dirac Stars on Fluid Branes
4. Concluding Remarks, Discussion and Outlook
Funding
Conflicts of Interest
References
- Ovalle, J. Decoupling gravitational sources in general relativity: from perfect to anisotropic fluids. Phys. Rev. D 2017, 95, 104019. [Google Scholar] [CrossRef] [Green Version]
- Ovalle, J. Non-uniform Braneworld Stars: An Exact Solution. Int. J. Mod. Phys. D 2009, 18, 837. [Google Scholar] [CrossRef] [Green Version]
- Casadio, R.; Ovalle, J. Brane-world stars from minimal geometric deformation, and black holes. Gen. Rel. Grav. 2014, 46, 1669. [Google Scholar] [CrossRef] [Green Version]
- Ovalle, J.; Gergely, L.; Casadio, R. Brane-world stars with a solid crust and vacuum exterior. Class. Quant. Grav. 2015, 32, 045015. [Google Scholar] [CrossRef]
- Antoniadis, I.; Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G.R. New dimensions at a millimeter to a Fermi and superstrings at a TeV. Phys. Lett. B 1998, 436, 257. [Google Scholar] [CrossRef] [Green Version]
- Antoniadis, I. A Possible new dimension at a few TeV. Phys. Lett. B 1990, 246, 377–384. [Google Scholar] [CrossRef] [Green Version]
- Randall, L.; Sundrum, R. A Large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 1999, 83, 3370. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, M.C.B.; Hoff da Silva, J.M.; da Rocha, R. Notes on the Two-brane Model with Variable Tension. Phys. Rev. D 2009, 80, 046003. [Google Scholar] [CrossRef] [Green Version]
- da Rocha, R.; Hoff da Silva, J.M. Black string corrections in variable tension braneworld scenarios. Phys. Rev. D 2012, 85, 046009. [Google Scholar] [CrossRef] [Green Version]
- Gergely, L.A. Eotvos branes. Phys. Rev. D 2009, 79, 086007. [Google Scholar] [CrossRef] [Green Version]
- Ovalle, J. Searching exact solutions for compact stars in braneworld: A Conjecture. Mod. Phys. Lett. A 2008, 23, 3247. [Google Scholar] [CrossRef] [Green Version]
- Boschi-Filho, H.; Braga, N.R.F. Compact AdS space, brane geometry and the AdS / CFT correspondence. Phys. Rev. D 2002, 66, 025005. [Google Scholar] [CrossRef] [Green Version]
- Boschi-Filho, H.; Braga, N.R.F. Isometries of a D3-brane space. Class. Quant. Grav. 2004, 21, 2427–2433. [Google Scholar] [CrossRef] [Green Version]
- da Rocha, R.; Tomaz, A.A. Holographic entanglement entropy under the minimal geometric deformation and extensions. Eur. Phys. J. C 2019, 79, 1035. [Google Scholar] [CrossRef]
- Cavalcanti, R.T.; Goncalves da Silva, A.; da Rocha, R. Strong deflection limit lensing effects in the minimal geometric deformation and Casadio-Fabbri-Mazzacurati solutions. Class. Quant. Grav. 2016, 33, 215007. [Google Scholar] [CrossRef] [Green Version]
- Casadio, R.; Ovalle, J.; da Rocha, R. Classical Tests of General Relativity: Brane-World Sun from Minimal Geometric Deformation. EPL 2015, 110, 40003. [Google Scholar] [CrossRef] [Green Version]
- Casadio, R.; da Rocha, R. Stability of the graviton Bose-Einstein condensate in the brane-world. Phys. Lett. B 2016, 763, 434. [Google Scholar] [CrossRef] [Green Version]
- Fernandes-Silva, A.; Ferreira-Martins, A.J.; da Rocha, R. Extended quantum portrait of MGD black holes and information entropy. Phys. Lett. B 2019, 791, 323. [Google Scholar] [CrossRef]
- Casadio, R.; Ovalle, J.; da Rocha, R. Black Strings from Minimal Geometric Deformation in a Variable Tension Brane-World. Class. Quant. Grav. 2014, 31, 045016. [Google Scholar] [CrossRef]
- Casadio, R.; Ovalle, J.; da Rocha, R. The Minimal Geometric Deformation Approach Extended. Class. Quant. Grav. 2015, 32, 215020. [Google Scholar] [CrossRef] [Green Version]
- Ovalle, J.; Linares, F.; Pasqua, A.; Sotomayor, A. The role of exterior Weyl fluids on compact stellar structures in Randall-Sundrum gravity. Class. Quant. Grav. 2013, 30, 175019. [Google Scholar] [CrossRef]
- Ovalle, J. Decoupling gravitational sources in general relativity: The extended case. Phys. Lett. B 2019, 788, 213–218. [Google Scholar] [CrossRef]
- Ovalle, J.; Linares, F. Tolman IV solution in the Randall-Sundrum Braneworld. Phys. Rev. D 2013, 88, 104026. [Google Scholar] [CrossRef] [Green Version]
- Bernardini, A.E.; Braga, N.R.F.; da Rocha, R. Conditional entropy of glueball states. Phys. Lett. B 2017, 765, 81. [Google Scholar] [CrossRef]
- Da Rocha, R. Dark SU(N) glueball stars on fluid branes. Phys. Rev. D 2017, 95, 124017. [Google Scholar] [CrossRef] [Green Version]
- Fernandes-Silva, A.; Ferreira-Martins, A.J.; da Rocha, R. The extended minimal geometric deformation of SU(N) dark glueball condensates. Eur. Phys. J. C 2018, 78, 631. [Google Scholar] [CrossRef]
- da Rocha, R. Black hole acoustics in the minimal geometric deformation of a de Laval nozzle. Eur. Phys. J. C 2017, 77, 355. [Google Scholar] [CrossRef] [Green Version]
- Contreras, E. Minimal Geometric Deformation: the inverse problem. Eur. Phys. J. C 2018, 78, 678. [Google Scholar] [CrossRef]
- Casadio, R.; Contreras, E.; Ovalle, J.; Sotomayor, A.; Stuchlick, Z. Isotropization and change of complexity by gravitational decoupling. Eur. Phys. J. C 2019, 79, 826. [Google Scholar] [CrossRef]
- Rincón, A.; Gabbanelli, L.; Contreras, E.; Tello-Ortiz, F. Minimal geometric deformation in a Reissner-Nordström background. Eur. Phys. J. C 2019, 79, 873. [Google Scholar] [CrossRef]
- Ovalle, J.; Posada, C.; Stuchlík, Z. Anisotropic ultracompact Schwarzschild star by gravitational decoupling. Class. Quant. Grav. 2019, 36, 205010. [Google Scholar] [CrossRef] [Green Version]
- Gabbanelli, L.; Ovalle, J.; Sotomayor, A.; Stuchlik, Z.; Casadio, R. A causal Schwarzschild-de Sitter interior solution by gravitational decoupling. Eur. Phys. J. C 2019, 79, 486. [Google Scholar] [CrossRef] [Green Version]
- Contreras, E.; Bargueño, P. Extended gravitational decoupling in 2 + 1 dimensional space-times. Class. Quant. Grav. 2019, 36, 215009. [Google Scholar] [CrossRef] [Green Version]
- Ovalle, J.; Casadio, R.; da Rocha, R.; Sotomayor, A.; Stuchlik, Z. Einstein-Klein-Gordon system by gravitational decoupling. EPL 2018, 124, 20004. [Google Scholar] [CrossRef] [Green Version]
- Morales, E.; Tello-Ortiz, F. Compact Anisotropic Models in General Relativity by Gravitational Decoupling. Eur. Phys. J. C 2018, 78, 841. [Google Scholar] [CrossRef] [Green Version]
- Morales, E.; Tello-Ortiz, F. Charged anisotropic compact objects by gravitational decoupling. Eur. Phys. J. C 2018, 78, 618. [Google Scholar] [CrossRef] [Green Version]
- Panotopoulos, G.; Rincón, A. Minimal Geometric Deformation in a cloud of strings. Eur. Phys. J. C 2018, 78, 851. [Google Scholar] [CrossRef] [Green Version]
- Ovalle, J.; Casadio, R.; da Rocha, R.; Sotomayor, A. Anisotropic solutions by gravitational decoupling. Eur. Phys. J. C 2018, 78, 122. [Google Scholar] [CrossRef] [Green Version]
- Gabbanelli, L.; Rincón, A.; Rubio, C. Gravitational decoupled anisotropies in compact stars. Eur. Phys. J. C 2018, 78, 370. [Google Scholar] [CrossRef]
- Pérez Graterol, R. A new anisotropic solution by MGD gravitational decoupling. Eur. Phys. J. Plus 2018, 133, 244. [Google Scholar] [CrossRef]
- Heras, C.L.; Leon, P. Using MGD gravitational decoupling to extend the isotropic solutions of Einstein equations to the anisotropical domain. Fortsch. Phys. 2018, 66, 1800036. [Google Scholar] [CrossRef] [Green Version]
- Casadio, R.; Nicolini, P.; da Rocha, R. Generalised uncertainty principle Hawking fermions from minimally geometric deformed black holes. Class. Quant. Grav. 2018, 35, 185001. [Google Scholar] [CrossRef] [Green Version]
- Herdeiro, C.A.R.; Pombo, A.M.; Radu, E. Asymptotically flat scalar, Dirac and Proca stars: discrete vs. continuous families of solutions. Phys. Lett. B 2017, 773, 654–662. [Google Scholar] [CrossRef]
- Dzhunushaliev, V.; Folomeev, V. Dirac stars supported by nonlinear spinor fields. Phys. Rev. D 2019, 99, 084030. [Google Scholar] [CrossRef] [Green Version]
- Bronnikov, K.A.; Rybakov, Y.P.; Saha, B. Spinor fields in spherical symmetry. Einstein-Dirac and other space-times. Eur. Phys. J. Plus 2020, 135, 124. [Google Scholar] [CrossRef] [Green Version]
- Saha, B. Spinor fields in spherically symmetric space-time. Eur. Phys. J. Plus 2018, 133, 461. [Google Scholar] [CrossRef]
- Saha, B. Non-minimally coupled nonlinear spinor field in Bianchi type-I cosmology. Eur. Phys. J. Plus 2019, 134, 491. [Google Scholar] [CrossRef]
- Saha, B. Nonlinear spinor field in isotropic space-time and dark energy models. Eur. Phys. J. Plus 2016, 131, 242. [Google Scholar] [CrossRef] [Green Version]
- Saha, B. Spinor field with polynomial nonlinearity in LRS Bianchi type-I space?time. Can. J. Phys. 2016, 94, 116–121. [Google Scholar] [CrossRef] [Green Version]
- Cianci, R.; Fabbri, L.; Vignolo, S. Critical exact solutions for self-gravitating Dirac fields. Eur. Phys. J. C 2016, 76, 595. [Google Scholar] [CrossRef] [Green Version]
- Fabbri, L. Least-order torsion-gravity for dirac fields, and their non-linearity terms. Gen. Rel. Grav. 2015, 47, 1837. [Google Scholar] [CrossRef] [Green Version]
- Fabbri, L.; Vignolo, S.; Carloni, S. Renormalizability of the Dirac equation in torsion gravity with nonminimal coupling. Phys. Rev. D 2014, 90, 024012. [Google Scholar] [CrossRef] [Green Version]
- Fabbri, L. Conformal Gravity with the most general ELKO Matter. Phys. Rev. D 2012, 85, 047502. [Google Scholar] [CrossRef] [Green Version]
- Dzhunushaliev, V.; Folomeev, V. Dirac Star with SU(2) Yang-Mills and Proca Fields. Phys. Rev. D 2020, 101, 024023. [Google Scholar] [CrossRef] [Green Version]
- Germani, C.; Maartens, R. Stars in the brane world. Phys. Rev. D 2001, 64, 124010. [Google Scholar] [CrossRef] [Green Version]
- Gleiser, M.; Watkins, R. Gravitational Stability of Scalar Matter. Nucl. Phys. B 1989, 319, 733–746. [Google Scholar] [CrossRef]
- Braga, N.R.F. Information versus stability in an anti-de Sitter black hole. Phys. Lett. B 2019, 797, 134919. [Google Scholar] [CrossRef]
- Braga, N.R.F.; da Rocha, R. Configurational entropy of anti-de Sitter black holes. Phys. Lett. B 2017, 767, 386–391. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Rocha, R. MGD Dirac Stars. Symmetry 2020, 12, 508. https://doi.org/10.3390/sym12040508
da Rocha R. MGD Dirac Stars. Symmetry. 2020; 12(4):508. https://doi.org/10.3390/sym12040508
Chicago/Turabian Styleda Rocha, Roldão. 2020. "MGD Dirac Stars" Symmetry 12, no. 4: 508. https://doi.org/10.3390/sym12040508
APA Styleda Rocha, R. (2020). MGD Dirac Stars. Symmetry, 12(4), 508. https://doi.org/10.3390/sym12040508