Using Data Envelopment Analysis and Multi-Criteria Decision-Making Methods to Evaluate Teacher Performance in Higher Education
Abstract
:1. Introduction
2. Background
2.1. Data Envelopment Analysis
2.2. Conjoint Analysis
2.3. The Analytic Hierarchy Process (AHP)
3. Methodological Framework
4. Empirical Study
4.1. Subjective Assessment of Teacher’s Efficiency
- Set f as an index of criterion with the lowest importance FI according to results of the conjoint analysis
- Impose boundaries for all criteria evaluated by the conjoint analysis. AR DEA constraints presented as Equation (2) in Section 2.1, are defined here as follows:
Verification of the DEA Results
4.2. Objective Assessment of Teacher’s Efficiency
4.2.1. Objective Assessment of Teaching Efficiency
- The total number of students registered for the listening subject by each of the selected teachers, over one academic year (I1)
- Annual salary of the teacher (I2)
- Total number of students who passed the exam with the chosen subject teacher in one academic year (O1)
- Average exam grade per subject/teacher (O2)
4.2.2. Assessment of the Research Efficiency
4.3. Aggregated Assessment of Overall Teacher’s Efficiency
5. Conclusions
- It allows subjective and objective efficiency assessment, as well as determining an overall efficiency score by considering the weights associated with the various aspects of efficiency;
- It provides better criteria selection that is well-matched for the stakeholders and allows the selection of different criteria combinations suitable for different objectives and numbers of DMUs;
- It incorporates students’ preferences by selecting a meaningful and desirable set of criteria or imposing weight restrictions;
- It identifies key aspects of teaching that affect student satisfaction;
- It increases the discriminative power of the DEA and thus enables a more realistic ranking of teachers.
Author Contributions
Funding
Conflicts of Interest
References
- Letcher, D.W.; Neves, J.S. Determinant of undergraduate business student satisfaction. Res. High. Educ. 2010, 6, 1–26. [Google Scholar]
- Venesaar, U.; Ling, H.; Voolaid, K. Evaluation of the Entrepreneurship Education Programme in University: A New Approach. Amfiteatru Econ. 2011, 8, 377–391. [Google Scholar]
- Johnes, G. Scale and technical efficiency in the production of economic research. Appl. Econ. Lett. 1995, 2, 7–11. [Google Scholar] [CrossRef]
- Despotis, D.K.; Koronakos, G.; Sotiros, D. A multi-objective programming approach to network DEA with an application to the assessment of the academic research activity. Procedia Comput. Sci. 2015, 55, 370–379. [Google Scholar] [CrossRef] [Green Version]
- Dommeyer, C.J.; Baum, P.; Chapman, K.; Hanna, R.W. Attitudes of Business Faculty Towards two Methods of Collecting Teaching Evaluations: Paper vs. Online. Assess. Eval. High. Edu. 2002, 27, 455–462. [Google Scholar] [CrossRef]
- Zabaleta, F. The use and misuse of student evaluation of teaching. Teach. High. Edu. 2007, 12, 55–76. [Google Scholar] [CrossRef]
- Onwuegbuzie, J.; Daniel, G.; Collins, T. A meta-validation model for assessing the score-validity of student teacher evaluations. Qual. Quant. 2009, 43, 197–209. [Google Scholar] [CrossRef]
- Mazumder, S.; Kabir, G.; Hasin, M.; Ali, S.M. Productivity Benchmarking Using Analytic Network Process (ANP) and Data Envelopment Analysis (DEA). Big Data Cogn. Comput. 2018, 2, 27. [Google Scholar] [CrossRef] [Green Version]
- Mulye, R. An empirical comparison of three variants of the AHP and two variants of conjoint analysis. J. Behav. Decis. Mak. 1998, 11, 263–280. [Google Scholar] [CrossRef]
- Helm, R.; Scholl, A.; Manthey, L.; Steiner, M. Measuring customer preferences in new product development: Comparing compositional and decompositional methods. Int. J. Product Developm. 2004, 1, 12–29. [Google Scholar] [CrossRef]
- Scholl, A.; Manthey, L.; Helm, R.; Steiner, M. Solving multiattribute design problems with analytic hierarchy process and conjoint analysis: An empirical comparison. Eur. J. Oper. Res. 2005, 164, 760–777. [Google Scholar] [CrossRef]
- Helm, R.; Steiner, M.; Scholl, A.; Manthey, L. A Comparative Empirical Study on common Methods for Measuring Preferences. Int. J. Manag. Decis. Mak. 2008, 9, 242–265. [Google Scholar] [CrossRef] [Green Version]
- Ijzerman, M.J.; Van Til, J.A.; Bridges, J.F. A comparison of analytic hierarchy process and conjoint analysis methods in assessing treatment alternatives for stroke rehabilitation. Patient 2012, 5, 45–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kallas, Z.; Lambarraa, F.; Gil, J.M. A stated preference analysis comparing the analytical hierarchy process versus choice experiments. Food Qual. Prefer. 2011, 22, 181–192. [Google Scholar] [CrossRef]
- Danner, M.; Vennedey, V.; Hiligsmann, M.; Fauser, S.; Gross, C.; Stock, S. Comparing Analytic Hierarchy Process and Discrete-Choice Experiment to Elicit Patient Preferences for Treatment Characteristics in Age-Related Macular Degeneration. Value Health 2017, 20, 1166–1173. [Google Scholar] [CrossRef] [Green Version]
- Popović, M.; Kuzmanović, M.; Savić, G. A comparative empirical study of Analytic Hierarchy Process and Conjoint analysis: Literature review. Decis. Mak. Appl. Manag. Eng. 2018, 1, 153–163. [Google Scholar] [CrossRef]
- Pakkar, M.S. A hierarchical aggregation approach for indicators based on data envelopment analysis and analytic hierarchy process. Systems 2016, 4, 6. [Google Scholar] [CrossRef] [Green Version]
- Sinuany-Stern, Z.; Mehrez, A.; Hadad, Y. An AHP/DEA methodology for ranking decision making units. Int. Trans. Oper. Res. 2000, 7, 109–124. [Google Scholar] [CrossRef]
- Martić, M.; Savić, G. An application of DEA for comparative analysis and ranking of regions in Serbia with regards to social-economic development. Eur. J. Oper. Res. 2001, 132, 343–356. [Google Scholar] [CrossRef]
- Feng, Y.J.; Lu, H.; Bi, K. An AHP/DEA method for measurement of the efficiency of R&D management activities in university. Int. Trans. Oper. Res. 2004, 11, 181–191. [Google Scholar] [CrossRef]
- Tseng, Y.F.; Lee, T.Z. Comparing appropriate decision support of human resource practices on organizational performance with DEA/AHP model. Expert Syst. Appl. 2009, 36, 6548–6558. [Google Scholar] [CrossRef]
- Saen, R.F.; Memariani, A.; Lotfi, F.H. Determining relative efficiency of slightly non-homogeneous decision making units by data envelopment analysis: A case study in IROST. Appl. Math. Comput. 2005, 165, 313–328. [Google Scholar] [CrossRef]
- Zhu, J. DEA/AR analysis of the 1988–1989 performance of the Nanjing Textiles Corporation. Ann. Oper. Res. 1996, 66, 311–335. [Google Scholar] [CrossRef]
- Seifert, L.M.; Zhu, J. Identifying excesses and deficits in Chinese industrial productivity (1953–1990): A weighted data envelopment analysis approach. Omega 1998, 26, 279–296. [Google Scholar] [CrossRef]
- Premachandra, I.M. Controlling factor weights in data envelopment analysis by incorporating decision maker’s value judgement: An approach based on AHP. J. Inf. Manag. Sci. 2001, 12, 1–12. [Google Scholar]
- Lozano, S.; Villa, G. Multi-objective target setting in data envelopment analysis using AHP. Comp. Operat. Res. 2009, 36, 549–564. [Google Scholar] [CrossRef]
- Kong, W.; Fu, T. Assessing the Performance of Business Colleges in Taiwan Using Data Envelopment Analysis and Student Based Value-Added Performance Indicators. Omega 2012, 40, 541–549. [Google Scholar] [CrossRef]
- Korhonen, P.J.; Tainio, R.; Wallenius, J. Value efficiency analysis of academic research. Eur. J. Oper. Res. 2001, 130, 121–132. [Google Scholar] [CrossRef]
- Cai, Y.Z.; Wu, W.J. Synthetic Financial Evaluation by a Method of Combining DEA with AHP. Int. Trans. Oper. Res. 2001, 8, 603–609. [Google Scholar] [CrossRef]
- Johnes, J. Data envelopment analysis and its application to the measurement of efficiency in higher education. Econ. Educ. Rev. 2006, 25, 273–288. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Kuo, C.A. A hierarchical AHP/DEA methodology for the facilities layout design problem. Eur. J. Oper. Res. 2003, 147, 128–136. [Google Scholar] [CrossRef]
- Ertay, T.; Ruan, D.; Tuzkaya, U.R. Integrating data envelopment analysis and analytic hierarchy for the facility layout design in manufacturing systems. Inf. Sci. 2006, 176, 237–262. [Google Scholar] [CrossRef]
- Ramanathan, R. Data envelopment analysis for weight derivation and aggregation in the analytical hierarchy process. Comput. Oper. Res. 2006, 33, 1289–1307. [Google Scholar] [CrossRef]
- Korpela, J.; Lehmusvaara, A.; Nisonen, J. Warehouse operator selection by combining AHP and DEA methodologies. Int. J. Prod. Econ. 2007, 108, 135–142. [Google Scholar] [CrossRef]
- Jyoti, T.; Banwet, D.K.; Deshmukh, S.G. Evaluating performance of national R&D organizations using integrated DEA-AHP technique. Int. J. Product. Perform. Manag. 2008, 57, 370–388. [Google Scholar] [CrossRef]
- Sueyoshi, T.; Shang, J.; Chiang, W.C. A decision support framework for internal audit prioritization in a rental car company: A combined use between DEA and AHP. Eur. J. Oper. Res. 2009, 199, 219–231. [Google Scholar] [CrossRef]
- Mohajeri, N.; Amin, G. Railway station site selection using analytical hierarchy process and data envelopment analysis. Comput. Ind. Eng. 2010, 59, 107–114. [Google Scholar] [CrossRef]
- Azadeh, A.; Ghaderi, S.F.; Mirjalili, M.; Moghaddam, M. Integration of analytic hierarchy process and data envelopment analysis for assessment and optimization of personnel productivity in a large industrial bank. Expert Syst. Appl. 2011, 38, 5212–5225. [Google Scholar] [CrossRef]
- Raut, R.D. Environmental performance: A hybrid method for supplier selection using AHP-DEA. Int. J. Bus. Insights Transform. 2011, 5, 16–29. [Google Scholar]
- Thanassoulis, E.; Dey, P.K.; Petridis, K.; Goniadis, I.; Georgiou, A.C. Evaluating higher education teaching performance using combined analytic hierarchy process and data envelopment analysis. J. Oper. Res. Soc. 2017, 68, 431–445. [Google Scholar] [CrossRef]
- Wang, C.; Nguyen, V.T.; Duong, D.H.; Do, H.T. A Hybrid Fuzzy Analytic Network Process (FANP) and Data Envelopment Analysis (DEA) Approach for Supplier Evaluation and Selection in the Rice Supply Chain. Symmetry 2018, 10, 221. [Google Scholar] [CrossRef] [Green Version]
- Salhieh, S.M.; All-Harris, M.Y. New product concept selection: An integrated approach using data envelopment analysis (DEA) and conjoint analysis (CA). Int. J. Eng. Technol. 2014, 3, 44–55. [Google Scholar] [CrossRef] [Green Version]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring Efficiency of Decision Making Units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef] [Green Version]
- Ahn, T.; Charnes, A.; Cooper, W.W. Efficiency characterizations in different DEA models. Socio-Econ. Plan. Sci. 1988, 22, 253–257. [Google Scholar] [CrossRef]
- Banker, R.D.; Morey, R.C. The use of categorical variables in data envelopment analysis. Manag. Sci. 1986, 32, 1613–1627. [Google Scholar] [CrossRef]
- Golany, B.; Roll, Y. An application procedure for DEA. Omega 1989, 17, 237–250. [Google Scholar] [CrossRef]
- Emrouznejad, A.; Witte, K. COOPER-framework: A unified process for non-parametric projects. Eur. J. Oper. Res. 2010, 207, 1573–1586. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, L.; Anderson, M. A multivariate statistical approach to reducing the number of variables in data envelopment analysis. Eur. J. Oper. Res. 2003, 147, 51–61. [Google Scholar] [CrossRef]
- Nunamaker, T.R. Using data envelopment analysis to measure the efficiency of non-profit organizations: A critical evaluation. MDE Manag. Decis. Econ. 1985, 6, 50–58. [Google Scholar] [CrossRef]
- Morita, H.; Avkiran, K.N. Selecting inputs and outputs in data envelopment analysis by designing statistical experiments. J. Oper. Res. Soc. Jpn. 2009, 52, 163–173. [Google Scholar] [CrossRef] [Green Version]
- Edirisinghe, N.C.; Zhang, X. Generalized DEA model of fundamental analysis and its application to portfolio optimization. J. Bank. Financ. 2007, 31, 3311–3335. [Google Scholar] [CrossRef]
- Jablonsky, J. Multicriteria approaches for ranking of efficient units in DEA models. Cent. Eur. J. Oper. Res. 2011, 20, 435–449. [Google Scholar] [CrossRef]
- Dimitrov, S.; Sutton, W. Promoting symmetric weight selection in data envelopment analysis: A penalty function approach. Eur. J. Oper. Res. 2010, 200, 281–288. [Google Scholar] [CrossRef]
- Shi, H.; Wang, Y.; Zhang, X. A Cross-Efficiency Evaluation Method Based on Evaluation Criteria Balanced on Interval Weights. Symmetry 2019, 11, 1503. [Google Scholar] [CrossRef] [Green Version]
- Thompson, R.G.; Singleton, F.D.; Thrall, M.R.; Smith, A.B. Comparative Site Evaluation for Locating a High-Energy Physics Lab in Texas. Interfaces 1986, 16, 35–49. [Google Scholar] [CrossRef]
- Radojicic, M.; Savic, G.; Jeremic, V. Measuring the efficiency of banks: The bootstrapped I-distance GAR DEA approach. Technol. Econ. Dev. Econ. 2018, 24, 1581–1605. [Google Scholar] [CrossRef]
- Addelman, S. Symmetrical and asymmetrical fractional factorial plans. Technometrics 1962, 4, 47–58. [Google Scholar] [CrossRef]
- Popović, M.; Vagić, M.; Kuzmanović, M.; Labrović Anđelković, J. Understanding heterogeneity of students’ preferences towards English medium instruction: A conjoint analysis approach. Yug. J. Op. Res. 2016, 26, 91–102. [Google Scholar] [CrossRef]
- Kuzmanovic, M.; Makajic-Nikolic, D.; Nikolic, N. Preference Based Portfolio for Private Investors: Discrete Choice Analysis Approach. Mathematics 2020, 8, 30. [Google Scholar] [CrossRef] [Green Version]
- Saaty, R.W. The analytic hierarchy process—What it is and how it is used. J. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Stankovic, M.; Gladovic, P.; Popovic, V. Determining the importance of the criteria of traffic accessibility using fuzzy AHP and rough AHP method. Decis. Mak. Appl. Manag. Eng. 2019, 2, 86–104. [Google Scholar] [CrossRef]
- Kuzmanović, M.; Savić, G.; Popović, M.; Martić, M. A new approach to evaluation of university teaching considering heterogeneity of students’ preferences. High. Educ. 2013, 66, 153–171. [Google Scholar] [CrossRef]
- Basso, A.; Funari, S. Introducing weights restrictions in data envelopment analysis models for mutual funds. Mathematics 2018, 6, 164. [Google Scholar] [CrossRef] [Green Version]
- Buschken, J. When does data envelopment analysis outperform a naive efficiency measurement model? Eur. J. Oper. Res. 2009, 192, 647–657. [Google Scholar] [CrossRef]
- Mester, G.L. Measurement of results of scientific work. Tehnika 2015, 70, 445–454. [Google Scholar] [CrossRef]
- Hirsch, J.E. An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. USA 2005, 102, 16569–16572. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://scholar.google.com/intl/en/scholar/citations.html (accessed on 9 January 2020.).
No | Criteria (Attributes) | Attribute Levels | Part-Worths (β) | Relative Importance Values (FI) |
---|---|---|---|---|
C1 | Clear and understandable presentation of teaching content | Yes | 0.865 | 22.98% |
No | −0.865 | |||
C2 | Methodical and systematic approach to teaching | Yes | 0.73 | 18.96% |
No | −0.73 | |||
C3 | Tempo of lectures | Too slow | 0.451 | 14.92% |
Optimal | −0.117 | |||
Too fast | −0.334 | |||
C4 | Preparedness for lectures | Good | 0.266 | 7.96% |
Poor | −0.266 | |||
C5 | Punctuality | On time | 0.303 | 9.00% |
Late | −0.303 | |||
C6 | Encouraging students to actively participate in classes | Yes | 0.28 | 8.14% |
No | −0.28 | |||
C7 | Informing students about their progress | Yes | 0.324 | 9.08% |
No | −0.324 | |||
C8 | Takes into account students’ comments and answers their questions | Yes | 0.293 | 8.95% |
No | −0.293 | |||
Constant | 4.046 | |||
Correlations | ||||
Pearson’s R = 0.966 (sig. = 0.000) | ||||
Kendall’s tau = 0.933 (sig. = 0.000) | ||||
Kendall’s tau (for two holdouts) = 1.000 |
Criteria | Min | Max | Mean | Std. Dev. |
---|---|---|---|---|
C1 | 2.17 | 5.00 | 4.400 | 0.535 |
C2 | 2.22 | 5.00 | 4.369 | 0.559 |
C3 | 2.17 | 5.00 | 4.302 | 0.565 |
C4 | 2.67 | 4.95 | 4.527 | 0.470 |
C5 | 1.72 | 4.92 | 4.380 | 0.652 |
C6 | 2.00 | 4.85 | 4.194 | 0.624 |
C7 | 1.83 | 4.85 | 4.127 | 0.643 |
C8 | 1.78 | 5.00 | 4.375 | 0.632 |
EWSM-Original | WSM-Conjoint | DEA | |
---|---|---|---|
Min | 2.073 | 2.098 | 0.539 |
Max | 4.944 | 4.960 | 1.000 |
Mean | 4.335 | 4.344 | 0.941 |
Std. Dev | 0.544 | 0.541 | 0.090 |
Spearman’s rho correlations | |||
EWSM-Original | 1 | 0.993 ** | 0.809 ** |
WSM-Conjoint | 0.993 ** | 1 | 0.797 ** |
DEA | 0.809 ** | 0.797 ** | 1 |
** Significant at the 0.01 level (2-tailed). | |||
3 efficient teachers, hk ≥ 0.95 for 18 out of 27 DMUs |
DMU | Ranks | DEA | Weights | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
EWSM-Original | WSM-Conjoint | DEA | θk | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | |
1 | 6 | 6 | 14 | 0.982 | 0 | 0 | 0 | 0.82 | 0 | 0.18 | 0 | 0 |
2 | 13 | 13 | 4 | 0.996 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
17 | 20 | 20 | 5 | 0.996 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
Method | DEA | Conjoint & DEA (Scenario A) | Conjoint AR DEA (Scenario B) | ||||||
---|---|---|---|---|---|---|---|---|---|
m + s | 8 | 3 (C1, C2, C3) | 8 | ||||||
Teachers | T | P | T + A | T | P | T + A | T | P | T + A |
No. of DMUs | 27 | 17 | 10 | 27 | 17 | 10 | 27 | 17 | 10 |
Average | 0.941 | 0.955 | 0.943 | 0.895 | 0.914 | 0.900 | 0.884 | 0.909 | 0.895 |
SD | 0.088 | 0.131 | 0.055 | 0.105 | 0.149 | 0.069 | 0.107 | 0.152 | 0.074 |
Max | 1.000 | 0.996 | 1.000 | 1.000 | 0.985 | 1.000 | 1.000 | 0.982 | 1.000 |
Min | 0.539 | 0.539 | 0.866 | 0.445 | 0.445 | 0.824 | 0.425 | 0.425 | 0.747 |
hk = 1 | 3 | 0 | 3 | 1 | 0 | 1 | 1 | 0 | 1 |
hk ≥ 0.95 | 18 | 12 | 6 | 11 | 7 | 4 | 7 | 4 | 3 |
EWSM-Original | WSM-Conjoint | DEA | Conjoint & DEA (Scenario A) | Conjoint AR DEA (Scenario B) | |
---|---|---|---|---|---|
Original | 1.000 | 0.993 | 0.809 | 0.933 | 0.997 |
Conjoint | 1.000 | 0.797 | 0.939 | 0.991 | |
DEA | 1.000 | 0.777 | 0.820 | ||
Conjoint & DEA | 1.000 | 0.941 | |||
Conjoint AR DEA | 1.000 |
Method | DEA | Conjoint & DEA (Scenario A) | Conjoint AR DEA (Scenario B) | |||
---|---|---|---|---|---|---|
m + s | 8 | 3 | 8 | |||
No. of DMUs | 27 | 1000 | 27 | 1000 | 27 | 1000 |
Average | 0.971 | 0.948 | 0.827 | 0.800 | 0.889 | 0.861 |
SD | 0.061 | 0.055 | 0.179 | 0.069 | 0.100 | 0.110 |
Max | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Min | 0.760 | 0.637 | 0.390 | 0.577 | 0.672 | 0.507 |
hk = 1 | 23 (85.19%) | 153 (15.3%) | 5 (18.52%) | 3 (0.30%) | 5 (18.52%) | 18 (1.8%) |
hk ≥ 0.95 | 23 (85.19%) | 613 (61.3%) | 9 (33.33%) | 11(1.10%) | 9 (33.33%) | 261 (26.1%) |
Parameters | Scientific Research Costs | Number of Citations | h Index | i10 Index |
---|---|---|---|---|
Min | 58419.00 | 683 | 14 | 17 |
Max | 91666.70 | 20 | 3 | 1 |
Average value | 32153.10 | 205.18 | 6.81 | 5.25 |
Standard deviation | 16368.70 | 161.16 | 2.74 | 4.14 |
Correlation | ||||
Scientific research costs | 1 | 0.646 | 0.624 | 0.616 |
Number of citations | 1 | 0.925 | 0.892 | |
h index | 1 | 0.944 | ||
i10 index | 1 |
DMU | Subjective Teachers’ Efficiency | Objective Teachers’ Efficiency | Overall Teachers’ Efficiency | Rank | |
---|---|---|---|---|---|
Conjoint & DEA (Scenario A) | Teaching | Research | |||
1 | 0.9581 | 0.989 | 0.7941 | 0.9055 | 9 |
2 | 0.9571 | 0.696 | 1 | 0.9177 | 5 |
3 | 0.7913 | 0.991 | 1 | 0.9083 | 8 |
4 | 0.4444 | 0.742 | 0.8037 | 0.6362 | 27 |
5 | 0.8769 | 0.955 | 1 | 0.9376 | 3 |
6 | 0.9857 | 0.755 | 0.6334 | 0.8104 | 22 |
7 | 0.9429 | 0.979 | 0.8478 | 0.9162 | 7 |
8 | 0.8552 | 1 | 0.7262 | 0.8391 | 18 |
9 | 0.9165 | 0.769 | 0.8439 | 0.8593 | 15 |
10 | 0.9765 | 1 | 1 | 0.9898 | 1 |
11 | 0.9586 | 0.739 | 0.7649 | 0.8427 | 16 |
12 | 0.8424 | 0.991 | 0.8889 | 0.8903 | 11 |
13 | 0.95 | 0.692 | 0.6071 | 0.7723 | 26 |
14 | 0.9091 | 0.761 | 0.6524 | 0.7855 | 25 |
15 | 0.8409 | 0.955 | 1 | 0.9221 | 4 |
16 | 0.8667 | 0.937 | 0.6655 | 0.8090 | 23 |
17 | 0.8345 | 0.947 | 0.7697 | 0.8347 | 19 |
18 | 0.95 | 0.767 | 0.6877 | 0.8171 | 21 |
19 | 0.9238 | 0.767 | 0.6877 | 0.8058 | 24 |
20 | 0.86 | 1 | 0.9373 | 0.9172 | 6 |
21 | 0.8211 | 0.992 | 0.8877 | 0.8809 | 14 |
22 | 0.8248 | 1 | 0.9065 | 0.891 | 10 |
23 | 1 | 1 | 0.9683 | 0.9885 | 2 |
24 | 0.8267 | 1 | 0.7692 | 0.8423 | 17 |
25 | 0.9789 | 0.948 | 0.7252 | 0.8810 | 13 |
26 | 0.9733 | 0.767 | 0.6877 | 0.8271 | 20 |
27 | 0.9833 | 0.889 | 0.769 | 0.8863 | 12 |
Average | 0.8907 | 0.8899 | 0.8157 | 0.8635 | |
SD | 0.1092 | 0.1168 | 0.1285 | 0.07245 | |
Max | 1 | 1 | 1 | 0.9898 | |
Min | 0.4444 | 0.692 | 0.6071 | 0.6362 | |
hk = 1 | 1 | 6 | 5 | 0 | |
hk ≥ 0.95 | 11 | 13 | 6 | 2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popović, M.; Savić, G.; Kuzmanović, M.; Martić, M. Using Data Envelopment Analysis and Multi-Criteria Decision-Making Methods to Evaluate Teacher Performance in Higher Education. Symmetry 2020, 12, 563. https://doi.org/10.3390/sym12040563
Popović M, Savić G, Kuzmanović M, Martić M. Using Data Envelopment Analysis and Multi-Criteria Decision-Making Methods to Evaluate Teacher Performance in Higher Education. Symmetry. 2020; 12(4):563. https://doi.org/10.3390/sym12040563
Chicago/Turabian StylePopović, Milena, Gordana Savić, Marija Kuzmanović, and Milan Martić. 2020. "Using Data Envelopment Analysis and Multi-Criteria Decision-Making Methods to Evaluate Teacher Performance in Higher Education" Symmetry 12, no. 4: 563. https://doi.org/10.3390/sym12040563
APA StylePopović, M., Savić, G., Kuzmanović, M., & Martić, M. (2020). Using Data Envelopment Analysis and Multi-Criteria Decision-Making Methods to Evaluate Teacher Performance in Higher Education. Symmetry, 12(4), 563. https://doi.org/10.3390/sym12040563