A Boundary Value Problem for Noninsulated Magnetic Regime in a Vacuum Diode
Abstract
:1. Motivation
2. Non-Negative Solutions for Boundary Value Problem (I)
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Langmuir, I.; Compton, K.T. Electrical discharges in gases Part II. Fundamental phenomena in electrical discharges. Rev. Mod. Phys. 1931, 3, 191–257. [Google Scholar] [CrossRef]
- Abdallah, N.B.; Degond, P.; Mehats, F. Mathematical models of magnetic insulation. Phys. Plasmas 1998, 5, 1522–1534. [Google Scholar] [CrossRef]
- Dulov, E.V.; Sinitsyn, A.V. A numerical modelling of the limit problem for the magnetically noninsulated diode. Appl. Math. Comput. 2005, 162, 115–154. [Google Scholar] [CrossRef]
- Sidorov, N.A.; Sinitsyn, A.V. Analysis of bifurcation points and nontrivial branches of solutions to the stationary Vlasov–Maxwell system. Math. Notes 1997, 62, 223–243. [Google Scholar] [CrossRef]
- Sidorov, N.A.; Sinitsyn, A.V. On bifurcation points of the stationary Vlasov-Maxwell system with bifurcation direction. In ECMI Progress in Industrial Mathematics at ECMI 98 (European Consortium for Mathematics in Industry); Vieweg+Teubner Verlag: Stuttgart, Germany, 1999; pp. 295–302. [Google Scholar]
- Sidorov, N.; Sidorov, D.; Sinitsyn, A. Towards General Theory of Differential-Operator and Kinetic Models; Book Series: World Scientific Series on Nonlinear Science Series A; World Scientific: Singapore; London, UK, 2020; Volume 97. [Google Scholar]
- Sidorov, N.A. Explicit and implicit parametrizations in the construction of branching solutions by iterative methods. Sb. Math. 1995, 186, 297. [Google Scholar] [CrossRef]
- Sidorov, N.A. A class of degenerate differential equations with convergence. Math. Notes Acad. Sci. USSR 1984, 35, 300–305. [Google Scholar] [CrossRef]
- Deimling, K. Nonlinear Functional Analysis; Springer: Berlin/Heidelberg, Germany, 1985. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas, E.M.; Sidorov, N.A.; Sinitsyn, A.V. A Boundary Value Problem for Noninsulated Magnetic Regime in a Vacuum Diode. Symmetry 2020, 12, 617. https://doi.org/10.3390/sym12040617
Rojas EM, Sidorov NA, Sinitsyn AV. A Boundary Value Problem for Noninsulated Magnetic Regime in a Vacuum Diode. Symmetry. 2020; 12(4):617. https://doi.org/10.3390/sym12040617
Chicago/Turabian StyleRojas, Edixon M., Nikolai A. Sidorov, and Aleksandr V. Sinitsyn. 2020. "A Boundary Value Problem for Noninsulated Magnetic Regime in a Vacuum Diode" Symmetry 12, no. 4: 617. https://doi.org/10.3390/sym12040617
APA StyleRojas, E. M., Sidorov, N. A., & Sinitsyn, A. V. (2020). A Boundary Value Problem for Noninsulated Magnetic Regime in a Vacuum Diode. Symmetry, 12(4), 617. https://doi.org/10.3390/sym12040617