Numerical Study of Suspension Filtration Model in Porous Medium with Modified Deposition Kinetics
Abstract
:1. Introduction
2. Formulation of the Problem
3. Finite Difference Schemes for Model
4. Stability of the Finite Difference Schemes
5. Numerical Algorithm
6. Numerical Experiments and Their Analyses
7. Improving the Model
8. Discussion
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Crittenden, J.C.; Harza, B.M. Water Treatment: Principles and Design, 3rd ed.; John Wiley and Sons Inc.: New York, NY, USA, 2012. [Google Scholar]
- Tarek, A.; McKinney, P.D. Advanced Reservoir Engineering; Gulf Professional Publishing: Burlington, VT, USA, 2005. [Google Scholar]
- Khuzhayorov, B.K.; Djiyanov, T.O.; Yuldashev, T.R. Anomalous Nonisothermal Transfer of a Substance in an Inhomogeneous Porous Medium. J. Eng. Phys. Thermophys. 2019, 92, 104–113. [Google Scholar] [CrossRef]
- Liu, R.; Jiang, Y. Fluid Flow in Fractured Porous Media; MDPI: Basel, Switzerland, 2019. [Google Scholar]
- Khuzhayorov, B.K. Filtration of Heterogeneous Liquids in Porous Media; Fan: Tashkent, Uzbekistan, 2005. (In Russian) [Google Scholar]
- Tien, C.; Ramarao, B.V. Granular Filtration of Aerosols and Hydrosols, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Jegatheesan, V.; Vigneswaran, S. Deep Bed Filtration: Mathematical Models and Observations. Crit. Rev. Environ. Sci. Technol. 2005, 35, 515–569. [Google Scholar] [CrossRef]
- Zamani, A.; Maini, B. Flow of dispersed particles through porous media-deep bed filtration. J. Pet. Sci. Eng. 2009, 69, 71–88. [Google Scholar] [CrossRef]
- Ives, K.J. The Scientific Basis of Filtration. Nato Advanced Study Institutes Series. Series E: Applied Sciences; Noordhoff International Publishing: Leyden, The Netherlands, 1975. [Google Scholar]
- Shekhtman, Y.M. Filtration of Suspensions of Low Concentrations; Institute of Mechanics, USSR Academy of Science: Moscow, Russia, 1961. [Google Scholar]
- Herzig, J.P.; Leclerc, D.M.; Goff, P. Flow of suspensions through porous media—Application to deep filtration. Ind. Eng. Chem. 1970, 62, 8–35. [Google Scholar] [CrossRef]
- Gitis, V.; Rubinstein, I.; Livshits, M.; Ziskind, G. Deep-bed filtration model with multistage deposition kinetics. Chem. Eng. J. 2010, 163, 78–85. [Google Scholar] [CrossRef]
- Khuzhayorov, B.; Fayziev, B. A model of suspension filtration in porous media with multistage accumulation kinetics. Int. J. Adv. Res. Sci. Eng. Technol. 2017, 4, 4643–4648. [Google Scholar]
- Sharma, M.M.; Yortsos, Y.C. Transport of Particulate Suspensions in Porous Media. Model Formulation. AIChE J. 1987, 33, 1636–1643. [Google Scholar] [CrossRef]
- Rege, S.D.; Fogler, H.S. A Network Model for Deep Bed Filtration of Solid Particles and Emulsion Drops. AIChE J. 1988, 34, 1761–1772. [Google Scholar] [CrossRef]
- Yang, H.; Balhoff, M.T. Pore-network modeling of particle retention in porous media. AIChE J. 2017, 63, 3118–3131. [Google Scholar] [CrossRef]
- Payatakes, A.C.; Tien, C.; Turian, R.M. A new model for granular porous media. I. model formulation. AIChE J. 1973, 19, 58–76. [Google Scholar] [CrossRef]
- Rajagopalan, R.; Tien, C. Trajectory analysis of deep-bed filtration with sphere-in-cell porous media model. AIChE J. 1976, 22, 523–533. [Google Scholar] [CrossRef]
- Paraskeva, C.A.; Burganos, V.N.; Payatakes, A.C. A three-dimensional trajectory analysis of particle deposition in constricted tubes. Chem. Eng. Commun. 2007, 108, 23–48. [Google Scholar] [CrossRef]
- Litwiniszyn, J. Colmatage-Scouring Kinetics in the Light of Stochastic Birth-Death Process. Bull. Acad. Pol. Sci. Ser. Sci. Technol. 1966, 14, 81–85. [Google Scholar]
- Hsu, E.H.; Fan, L.T. Experimental Study of Deep Bed Filtration: A Stochastic Treatment. AIChE J. 1984, 30, 267–273. [Google Scholar] [CrossRef]
- Nassar, R.; Chou, S.T.; Fan, L.T. Modelling and simulation of deep-bed filtration: A stochastic compartmental model. Chem. Eng. Sci. 1986, 41, 2017–2027. [Google Scholar] [CrossRef]
- Venitsianov, E.V.; Rubinstein, R.N. Dynamics of Sorption from Liquid Media; Nauka: Moscow, Russia, 1983. (In Russian) [Google Scholar]
- Venitsianov, E.V.; Senyavin, M.M. Mathematical description of filtration clarification of suspensions. Theor. Found. Chem. Technol. 1976, 10, 584–591. (In Russian) [Google Scholar]
- Guedes, G.R.; Al-Abduwani, F.; Bedrikovetsky, P.; Currie, P. Deep-Bed Filtration under Multiple Particle-Capture Mechanisms. SPE J. 2009, 14, 477–487. [Google Scholar] [CrossRef] [Green Version]
- Malgaresi, G.; Khazali, N.; Bedrikovetsky, P. Non-monotonic retention profiles during axi-symmetric colloidal flows. J. Hydrol. 2020, 580, 124235. [Google Scholar] [CrossRef]
- Bedrikovetsky, P. Upscaling of stochastic micro model for suspension transport in porous media. Transp. Porous Med. 2008, 75, 335–369. [Google Scholar] [CrossRef]
- Bradford, S.A.; Simunek, J.; Bettahar, M.; van Genuchten, M.T.; Yates, S.R. Modeling colloid attachment, straining, and exclusion in saturated porous media. Environ. Sci. Technol. 2003, 37, 2242–2250. [Google Scholar] [CrossRef]
- Chrysikopoulos, C.V.; Katzourakis, V.E. Colloid particle size-dependent dispersivity. Water Resour. Res. 2015, 51, 4668–4683. [Google Scholar] [CrossRef]
- Boronin, S.A.; Tolmacheva, K.I.; Osiptsov, A.A.; Sitnikov, A.N.; Yakovlev, A.A.; Belozerov, B.V.; Belonogov, E.V.; Galeev, R.R. Damage to formation surrounding flooding wells: Modelling of suspension filtration with account of particle trapping and mobilization. J. Phys. Conf. Ser. 2017, 925, 012009. [Google Scholar] [CrossRef]
- Doran, P.M. Bioprocess Engineering Principles, 2nd ed.; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Iwasaki, T. Some notes on sand filtration. J. Am. Water Works Assoc. 1937, 29, 1591–1602. [Google Scholar] [CrossRef]
- Mehter, A.A.; Turian, R.M.; Tien, C. Filtration in Deep Beds of Granular Activated Carbon; Research Report No. 70-3, FWPCA Grant No. 17020 OZO; Syracuse University: Syracuse, NY, USA, 1970. [Google Scholar]
- Ives, K.J. Rational design of filters. Proc. Inst. Civ. Eng. 1960, 16, 189–193. [Google Scholar] [CrossRef]
- Mints, D.M. Kinetics of filtration of low concentration water suspension in water purification filters. Dokl. Akad. Nauk 1951, 78, 315–318. (In Russian) [Google Scholar]
- Belevtsov, N.S.; Lukashchuk, S.Y. Symmetry group classification and conservation laws of the nonlinear fractional diffusion equation with the Riesz potential. Symmetry 2020, 12, 178. [Google Scholar] [CrossRef] [Green Version]
- Samarskii, A.A. The Theory of Difference Schemes; CRC Press: New York, NY, USA, 2001. [Google Scholar]
- Shampine, L.F. Two-step Lax-Friedrichs method. Appl. Math. Lett. 2005, 18, 1134–1136. [Google Scholar] [CrossRef] [Green Version]
- Golubev, V.I.; Mikhailov, D.N. Modeling the dynamics of filtration of a two-particle suspension through a porous medium. Works MIPT 2011, 3, 143–147. (In Russian) [Google Scholar]
- Thomas, J.W. Numerical Partial Differential Equations: Finite Difference Methods; Springer: New York, NY, USA, 1995. [Google Scholar]
- Strikwerda, J.C. Finite Difference Schemes and Partial Differential Equations, 2nd ed.; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2004. [Google Scholar]
- Khuzhaerov, B. Effects of blockage and erosion on the filtration of suspensions. J. Eng. Phys. 1990, 58, 185–190. [Google Scholar] [CrossRef]
- Zheng, X.L.; Shan, B.B.; Chen, L.; Sun, Y.W.; Zhang, S.H. Attachment–detachment dynamics of suspended particle in porous media: Experiment and modeling. J. Hydrol. 2014, 511, 199–204. [Google Scholar] [CrossRef]
- Hirabayashi, S.; Sato, T.; Mitsuhori, K.; Yamamoto, Y. Microscopic numerical simulations of suspension with particle accumulation in porous media. Powder Technol. 2012, 225, 143–148. [Google Scholar] [CrossRef]
- Khuzhaerov, B. Model of colmatage-suffosion filtration of disperse systems in a porous medium. J. Eng. Phys. 2000, 58, 668–673. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fayziev, B.; Ibragimov, G.; Khuzhayorov, B.; Alias, I.A. Numerical Study of Suspension Filtration Model in Porous Medium with Modified Deposition Kinetics. Symmetry 2020, 12, 696. https://doi.org/10.3390/sym12050696
Fayziev B, Ibragimov G, Khuzhayorov B, Alias IA. Numerical Study of Suspension Filtration Model in Porous Medium with Modified Deposition Kinetics. Symmetry. 2020; 12(5):696. https://doi.org/10.3390/sym12050696
Chicago/Turabian StyleFayziev, Bekzodjon, Gafurjan Ibragimov, Bakhtiyor Khuzhayorov, and Idham Arif Alias. 2020. "Numerical Study of Suspension Filtration Model in Porous Medium with Modified Deposition Kinetics" Symmetry 12, no. 5: 696. https://doi.org/10.3390/sym12050696
APA StyleFayziev, B., Ibragimov, G., Khuzhayorov, B., & Alias, I. A. (2020). Numerical Study of Suspension Filtration Model in Porous Medium with Modified Deposition Kinetics. Symmetry, 12(5), 696. https://doi.org/10.3390/sym12050696