A Kind of Variation Symmetry: Tarski Associative Groupoids (TA-Groupoids) and Tarski Associative Neutrosophic Extended Triplet Groupoids (TA-NET-Groupoids)
Abstract
:1. Introduction
2. Preliminaries
- (1)
- ∀a, b, c∈S, a*(b*c) = a*(c*b), S is called right commutative; if (a*b)*c = (b*a)*c, S is called left commutative. When S is right and left commutative, then it is called bi-commutative groupoid.
- (2)
- If a2 = a (a∈S), the element a is called idempotent.
- (3)
- If for all x, y∈S, a*x = a*y ⇒ x = y (x*a = y*a ⇒ x = y), the element a∈S is left cancellative (respectively right cancellative). If an element is a left and right cancellative, the element is cancellative. If (∀a∈S) a is left (right) cancellative or cancellative, then S is left (right) cancellative or cancellative.
- (4)
- If ∀a, b, c ∈S, a*(b*c) = (a*b)*c, S is called semigroup. If ∀a, b∈S, a * b = b * a, then a semigroup (S, *) is commutative.
- (5)
- If ∀a∈S, a2 = a, a semigroup (S, *) is called a band.
- (1)
- If (a*b)*c = b*(a*c), then S is called an AG*-groupoid.
- (2)
- If a*(b*c) = b*(a*c), then S is called an AG**-groupoid.
- (3)
- If a*(b*c) = c*(a*b), then S is called a cyclic associative AG-groupoid (or CA-AG-groupoid).
- (1)
- For any a, b, c, d, x, y∈S, (a * b) * (c * d) = (d * a) * (c * b);
- (2)
- For any a, b, c, d, x, y∈S, (a * b) * ((c * d) * (x * y)) = (d * a) * ((c * b) * (x * y)).
- (1)
- (S, *) is well-defined, that is, for any a, b ∈ S, a * b ∈S.
- (2)
- (S, *) is associative, that is, for any a, b, c ∈S, (a * b) *c = a * (b * c).
3. Tarski Associative Groupoids (TA-Groupoids)
- (i)
- if x, y, z∈S1, by the definition of operation * we can get (x*y)*z = x* (y*z) =x* (z*y);
- (ii)
- if x, y, z∈ S2, then (x*y)*z = = x* (z*y), by (2) in the definition of operation *;
- (iii)
- if x∈ S2, y, z∈ S1, then (x*y)*z = y*z = z*y = x* (z*y), by (1) in the definition of operation *;
- (iv)
- if x∈ S2, y∈ S2, z∈ S1, then (x*y)*z =*z = z = z*y = x* (z*y), by the definition of operation *;
- (v)
- if x∈ S2, y∈ S1, z∈ S2, then (x*y)*z = y*z = y = z*y = x* (z*y), by the definition of operation *;
- (vi)
- if x∈ S1, y∈ S2, z∈ S1, then (x*y)*z = x*z = x* (z*y), by (1) in the definition of operation *;
- (vii)
- if x∈ S1, y∈ S1, z∈ S2, then (x*y)*z = x*y = x* (z*y), by (1) in the definition of operation *;
- (vii)
- if x∈S1, y∈S2, z∈S2, then (x*y)*z = x*z = x = x* = x* (z*y), by (1) and (2) in the definition of operation *.
4. Various Properties of Tarski Associative Groupoids (TA-Groupoids)
- (1)
- (m*n) *(p*r) = (m*r)*(p*n);
- (2)
- ((m*n)*(p*r))*(s*t) = (m*r)*((s*t)*(p*n)).
= ((m*n)*r)*(s* (p*t)) = ((m*n) *r)*((s*t) *p) = ((m*n) *p)*((s*t) *r)
= (m*(p*n))*((s*t)*r) = (m*r)*((s*t)*(p*n)). □
- (1)
- If ∃e∈S such that (∀a∈S) e*a=a, then (S, *) is a commutative semigroup.
- (2)
- If e∈S is a left identity element in S, then e is an identity element in S.
- (3)
- If S is a right commutative CA-groupoid, then S is an AG-groupoid.
- (4)
- If S is a right commutative CA-groupoid, then S is a left commutative CA-groupoid.
- (5)
- If S is a left commutative CA-groupoid, then S is a right commutative CA-groupoid.
- (6)
- If S is a left commutative CA-groupoid, then S is an AG-groupoid.
- (7)
- If S is a left commutative semigroup, then S is a CA-groupoid.
- (1)
- If S is a left commutative AG-groupoid, then S is a CA-groupoid.
- (2)
- If S is a left commutative AG-groupoid, then S is a right commutative TA-groupoid.
- (3)
- If S is a right commutative AG-groupoid, then S is a left commutative TA-groupoid
- (4)
- If S is a right commutative AG-groupoid, then S is a CA-groupoid.
- (5)
- If S is a left commutative semigroup, then S is an AG-groupoid.
- (1)
- If S is a CA-AG-groupoid and a semigroup, then S is a TA-groupoid.
- (2)
- If S is a CA-AG-groupoid and a TA-groupoid, then S is a semigroup.
- (3)
- If S is a semigroup, TA-groupoid and CA-groupoid, then S is an AG-groupoid.
- (4)
- If S is a semigroup, TA-groupoid and AG-groupoid, S is a CA-groupoid.
- (1)
- Every left cancellative element in S is right cancellative element;
- (2)
- if x, y∈S and they are left cancellative elements, then x*y is a left cancellative element;
- (3)
- if x is left cancellative and y is right cancellative, then x*y is left cancellative;
- (4)
- if x*y is right cancellative, then y is right cancellative;
- (5)
- If for all a∈S, a2 = a, then it is associative. That is, S is a band.
= x*((x*x)*p) = x*(x*(p*x)) = x*(x*(q*x))
= x*((x*x)*q) = (x*q)*(x*x) = ((x*q)*x)*x
= (x*(x*q))*x = x*(x*(x*q)).
= (x*p)*(x*y) (by Proposition 5 (1))
= x((x*y)*p) = x((xy)*p) = x((xy)*q) = x((x*y)*q)
= (x*q)*(x*y) = (x*y)*(x*q) = x*((x*q)*y)
= x *(x*(y*q)).
= r*(r*((s*t)*(s*t))) = r*(r*(s*t)).
= r*((r*s)*t) = r*(r*(t*s)).
= ((a1 *1 b1)*1c1, (a2 *2 b2)*2 c2) = (a1 *1 (c1 *1 b1), a2 *2 (c2 *2 b2))
= (a1, a2) * (c1 *1 b1, c2*2 b2) = (a1, a2) * ((c1, c2) * (b1, b2)).
xs1 = xt1, ys2 = yt2.
5. Tarski Associative Neutrosophic Extended Triplet Groupoids (TA-NET-Groupoids) and Weak Commutative TA-NET-Groupoids (WC-TA-NET-Groupoids)
- (1)
- (S, *) is well-defined, that is, (∀x, y∈S) x*y ∈ S;
- (2)
- (S, *) is Tarski associative, that is, for any x, y, z ∈S (x*y)*z = x*(z*y).
- (1)
- neut(x) *neut(x) = neut(x);
- (2)
- neut(neut(x)) = neut(x);
- (3)
- anti(neut(x))∈ {anti(neut(x))}, x = anti(neut(x)) *x.
x*neut(neut(x)) = (x*neut(x))*neut(neut(x)) = x*(neut(neut(x))*neut(x)) = x*neut(x) = x.
x*(anti(neut(x))*anti(x)) = (x*anti(x))*anti(neut(x)) = neut(x)*anti(neut(x)) = neut(neut(x)).
(anti(neut(x))*anti(x))*x = x*(anti(neut(x))*anti(x)) = neut(neut(x)).
= neut(neut(x))*x = neut(x)*x = x.
- (1)
- m*(neut(x)) = neut(x)*n;
- (2)
- anti(neut(x))*anti(x)∈{anti(x)};
- (3)
- neut(x)*anti(n) = x*neut(n);
- (4)
- neut(m)*neut(x) = neut(x)*neut(m) = neut(x);
- (5)
- (n*(neut(x))*x = x*(neut(x)*n) = neut(x);
- (6)
- neut(n)*x = x.
m*(neut(x)) = m*(n*x) = (m*x)*n = neut(x)*n.
x*[anti(neut(x))*anti(x)] = [x*(anti(x))]*anti(neut(x)) = neut(x)*anti(neut(x))
= neut(neut(x)) = neut(x).
[anti(neut(x))*anti(x)]*x = anti(neut(x))*[x*(anti(x)] =anti(neut(x))*neut(x)
= neut(neut(x)) = neut(x).
neut(x)*neut(m) = neut(x)*[m*(anti(m))] = [neut(x)*anti(m)]*m.
x*[neut(x)*n] = (x*n)*(neut(x)) = neut(x)*neut(x) = neut(x).
- (1)
- y*x = z*x, implies neut(x)*y = neut(x)*z;
- (2)
- y*x = z*x, if and only if y*neut(x) = z*neut(x).
anti(x)*(z*x) = (anti(x)*x)*z = neut(x)*z.
- (1)
- neut(x) * neut(y) = neut(x * y);
- (2)
- anti(x) * anti(y) ∈ {anti(x * y)}.
(neut(x)*neut(y))*(x*y) = (neut(x)*neut(y))*(y*x) = (neut(x)*x)*(y*(neut(y)) = x*y.
(x*y)*(anti(x)*anti(y)) = (x*y)*(anti(y)*anti(x)) = (x*anti(x))*(anti(y)*y) = neut(x)*neut(y).
- (1)
- neut(x)*neut(y) = neut(y)*neut(x).
- (2)
- neut(x)*(neut(y)*x) = neut(x)*(x*neut(y)).
neut(x)*(neut(y)*x) = neut(x)*(x*neut(y)).
(neut(x)*neut(y))*x =(neut(y)*neut(x))*x = neut(y)*(x*neut(x)) = neut(y)*x.
- (1)
- neut(x)*neut(y) = neut(y*x);
- (2)
- anti(x)*anti(y) ∈{anti(y*x)};
- (3)
- (S is commutative) ⇔ (S is weak commutative).
[neut(x)*y]*[neut(y)*x] = [y*neut(x)]*[x*neut(y)] = [y*neut(y)]*[x*neut(x)] = y*x.
(y*x)*[anti(x)*anti(y)] = [y*anti(y)] * [anti(x)*x] = neut(y)*neut(x) = neut(x)*neut(y).
= (neut(y)*y)*(neut(x)*x) = y*x.
6. Decomposition Theorem of TA-NET-Groupoids
- (1)
- neut(x)*m∈{anti(x)};
- (2)
- m*neut(x) = (neut(x)*m)*neut(x);
- (3)
- neut(x)*m = (neut(x)*m)*neut(x);
- (4)
- m*neut(x) = neut(x)*m;
- (5)
- neut(m*(neut(x))) = neut(x).
[neut(x)*m]*x = [neut(x)*m]*[x*neut(x)] = [neut(x)*neut(x)]*(x*m) = [neut(x)*neut(x)]*neut(x) = neut(x).
= neut(x)*[neut(x)*neut(x)] = neut(x).
x*t = x*[m*(neut(x))] = [x*neut(x)]*m = x*m = neut(x).
= anti(y1*y2)*[y1*(y1*y2)] (By (y1*y2)*(y1*y2) = y1*(y1*y2))
= [anti(y1*y2)*(y1*y2)]*y1 = neut(y1*y2)*y1.
= [neut(y1*y2)*y1]*y1 (By y1*y2 = [neut(y1*y2)]*y1)
= neut(y1*y2)*(y1*y1) = neut(y1*y2)*y1 = y1*y2.
(z2* z3)*(z2* z3) = z2* z3, (z2* z4)*(z2* z4) = z2* z4, (z3* z4)*(z3* z4) = z3* z4.
- (1)
- S(e) is a subgroup of S.
- (2)
- for any e1, e2∈E(S), e1≠e2 ⇒ S(e1) ∩ S(e2) = ∅.
- (3)
- .
e*(m*n) = (e*e)*(m*n) = (e*n)*(m*e) = (e*n)*m
= (e*n)*(e*m) = (e*m)*(e*n) = m*n.
= [m*(n*anti(n))]*anti(m) = (m*neut(n))*anti(m) = (m*e)*anti(m)
= m*anti(m) = neut(m) = e.
[anti(m)*anti(n)]*(m*n) = [anti(m)*n]*[m*anti(n)] = anti(m)*[(m*anti(n))*n]
= anti(m)* [m*(n*anti(n))] = anti(m)*(m*neut(n)) = anti(m)*(m*e)
= anti(m)*m = neut(m) = e.
neut(t) = neut(q*neut(m)) = neut(m) = e.
neut(m3) = m3, anti(m3) = {m3, m5}; neut(m4) = m4, anti(m4) = m4; neut(m5) = m5, anti(m5) = m5.
neut(z) = y, {anti(z)} = {z, v}; neut(u) = u, {anti(u)} = {y, z, u, v}; neut(v) = v, anti(v) = v.
S =S1 ∪ S₂ ∪ S3 ∪ S4, S1 ∩ S₂ = ∅, S1 ∩ S3 = ∅, S1 ∩ S4 = ∅, S₂ ∩ S3 = ∅, S₂ ∩ S4 = ∅, S3 ∩ S4 = ∅.
7. Conclusions
- (1)
- The concepts of commutative semigroup and commutative TA-groupoid are equivalent.
- (2)
- Every TA-groupoid with left identity element is a monoid.
- (3)
- A TA-groupoid is a band if each element is idempotent (see Theorem 4 and Example 9).
- (4)
- In a Tarski associative neutrosophic extended triplet groupoid (TA-NET-groupoid), the local unit element neut(a) is unique (see Theorem 7).
- (5)
- The concepts of commutative TA-groupoid and WC-TA-groupoid are equivalent.
- (6)
- In a TA-NET-groupoid, the product of two idempotent elements is still idempotent (see Theorem 12 and Example 12).
- (7)
- Every TA-NET-groupoid is factorable (see Theorem 13 and Example 13–14).
Author Contributions
Funding
Conflicts of Interest
References
- Dickson, L.E. Book Review: Éléments de la Théorie des Groupes Abstraits. Bull. Amer. Math. Soc. 1904, 11, 159–162. [Google Scholar] [CrossRef]
- Clifford, A.H.; Preston, G.B. The Algebraic Theory of Semigroups; American Mathematical Society: Providence, RI, USA, 1961. [Google Scholar]
- Holgate, P. Groupoids satisfying a simple invertive law. Math. Stud. 1992, 61, 101–106. [Google Scholar]
- Howie, J.M. Fundamentals of Semigroup Theory; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Akinmoyewa, J.T. A study of some properties of generalized groups. Octogon 2009, 17, 599–626. [Google Scholar]
- Suschkewitsch, A. On a generalization of the associative law. Transactions of the American Mathematical Society. 1929, 31, 204–214. [Google Scholar] [CrossRef]
- Hosszu, M. Some functional equations related with the associative law. Publ. Math. Debrecen 1954, 3, 205–214. [Google Scholar]
- Maksa, G. CM solutions of some functional equations of associative type. Ann. Univ. Sci. Budapest. Sect. Comput. 2004, 24, 125–132. [Google Scholar]
- Schölzel, K.; Tomaschek, J. Power series solutions of Tarski’s associativity law and of the cyclic associativity law. Aequat. Math. 2016, 90, 411–425. [Google Scholar] [CrossRef]
- Thedy, A. Ringe mit x(yz) = (yx)z. Mathematische Zeitschriften. 1967, 99, 400–404. [Google Scholar] [CrossRef]
- Phillips, J.D.; Vojtechovský, P. Linear groupoids and the associated wreath products. J. Symb. Comput. 2005, 40, 1106–1125. [Google Scholar] [CrossRef] [Green Version]
- Pushkashu, D.I. Para-associative groupoids. Quasigroups Relat. Syst. 2010, 18, 187–194. [Google Scholar]
- Weinstein, A. Groupoids: Unifying internal and external symmetry. A tour through some examples. Not. AMS 1996, 43, 744–752. [Google Scholar]
- Kazim, M.A.; Naseeruddin, M. On almost semigroups. Alig. Bull. Math. 1972, 2, 1–7. [Google Scholar]
- Shah, M.; Shah, T.; Ali, A. On the cancellativity of AG-groupoids. Int. Math. Forum 2011, 6, 2187–2194. [Google Scholar]
- Stevanovic, N.; Protic, P.V. Some decomposition on Abel-Grassmann’s groupoids. PU. M. A. 1997, 8, 355–366. [Google Scholar]
- Shah, M.; Ali, A.; Ahmad, I. On introduction of new classes of AG-groupoids. Res. J. Recent Sci. 2013, 2, 67–70. [Google Scholar]
- Mushtaq, Q.; Khan, M. Direct product of Abel-Grassmann’s groupoids. J. Interdiscip. Math. 2008, 11, 461–467. [Google Scholar] [CrossRef]
- Mushtaq, Q.; Kamran, M.S. On LA-semigroups with weak associative law. Sci. Khyber. 1989, 1, 69–71. [Google Scholar]
- Ahmad, I.; Rashad, M.; Shah, M. Some properties of AG*-groupoid. Res. J. Recent Sci. 2013, 2, 91–93. [Google Scholar]
- Iqbal, M.; Ahmad, I.; Shah, M.; Ali, M.I. On cyclic associative Abel-Grassman groupoids. Br. J. Math. Comput. Sci. 2016, 12, 1–16. [Google Scholar] [CrossRef]
- Iqbal, M.; Ahmad, I. On further study of CA-AG-groupoids. Proc. Pakistan Acad. Sci. A. Phys. Comput. Sci. 2016, 53, 325–337. [Google Scholar]
- Zhang, X.H.; Ma, Z.R.; Yuan, W.T. Cyclic associative groupoids (CA-groupoids) and cyclic associative neutrosophic extended triplet groupoids (CA-NET-groupoids). Neutrosophic Sets Syst. 2019, 29, 19–29. [Google Scholar]
- Smarandache, F. Neutrosophic Perspectives: Triplets, Duplets, Multisets, Hybrid Operators, Modal Logic, Hedge Algebras and Applications; Pons Publishing House: Brussels, Belgium, 2017. [Google Scholar]
- Zhang, X.H.; Wu, X.Y.; Mao, X.Y.; Smarandache, F.; Park, C. On neutrosophic extended triplet groups (loops) and Abel-Grassmann’s groupoids (AG-groupoids). J. Intell. Fuzzy Syst. 2019, 37, 5743–5753. [Google Scholar] [CrossRef]
- Smarandache, F.; Ali, M. Neutrosophic triplet group. Neural Comput. Appl. 2018, 29, 595–601. [Google Scholar]
- Golan, J.S. Semirings and Their Applications; Springer: Dordrecht, The Netherlands, 1999. [Google Scholar]
- Zhang, X.H.; Borzooei, R.A.; Jun, Y.B. Q-filters of quantum B-algebras and basic implication algebras. Symmetry 2018, 10, 573. [Google Scholar] [CrossRef] [Green Version]
◦ | θ | G | G2 | G3 | G4 | G5 |
---|---|---|---|---|---|---|
θ | θ | G | G2 | G3 | G4 | G5 |
G | G | G2 | G3 | G4 | G5 | θ |
G2 | G2 | G3 | G4 | G5 | θ | G |
G3 | G3 | G4 | G5 | θ | G | G2 |
G4 | G4 | G5 | θ | G | G2 | G3 |
G5 | G5 | θ | G | G2 | G3 | G4 |
* | a | b | c | d | e |
---|---|---|---|---|---|
a | a | a | a | a | a |
b | d | d | c | c | b |
c | d | c | c | c | c |
d | d | d | c | c | c |
e | d | c | c | c | e |
* | s | t | u | v | w |
---|---|---|---|---|---|
s | s | s | s | s | s |
t | t | t | t | t | t |
u | s | s | u | u | s |
v | s | s | u | v | s |
w | t | t | w | w | t |
+ | s | t | u | v | w |
---|---|---|---|---|---|
s | s | t | u | u | w |
t | t | s | w | w | u |
u | u | w | u | u | w |
v | u | w | u | u | w |
w | w | u | w | w | u |
+ | s | t | u | v | w |
---|---|---|---|---|---|
s | s | t | u | v | w |
t | t | t | w | w | w |
u | u | w | u | u | w |
v | v | w | u | u | w |
w | w | w | w | w | w |
* | e1 | e2 | e3 | e4 | e5 | e6 |
---|---|---|---|---|---|---|
e1 | e1 | e1 | e1 | e1 | e1 | e1 |
e2 | e2 | e2 | e2 | e2 | e2 | e2 |
e3 | e1 | e1 | e4 | e6 | e1 | e3 |
e4 | e1 | e1 | e6 | e3 | e1 | e4 |
e5 | e2 | e2 | e5 | e5 | e2 | e5 |
e6 | e1 | e1 | e3 | e4 | e1 | e6 |
* | x1 | x2 | x3 | x4 | x5 |
---|---|---|---|---|---|
x1 | x1 | x1 | x3 | x3 | x5 |
x2 | x2 | x2 | x4 | x4 | x5 |
x3 | x3 | x3 | x1 | x1 | x5 |
x4 | x4 | x4 | x2 | x2 | x5 |
x5 | x5 | x5 | x5 | x5 | x5 |
* | e | f | g | h | i |
---|---|---|---|---|---|
e | e | e | e | e | e |
f | e | e | e | e | e |
g | e | e | e | e | f |
h | e | e | e | e | f |
i | e | e | e | g | h |
* | x | y | z | u |
---|---|---|---|---|
x | x | x | x | x |
y | y | y | z | y |
z | u | u | z | u |
u | u | u | u | u |
* | Δ | Γ | Ι | ϑ | Κ | Λ |
---|---|---|---|---|---|---|
Δ | Δ | Δ | Δ | Δ | Δ | Δ |
Γ | Δ | Γ | Ι | ϑ | Κ | Δ |
Ι | Δ | Ι | Κ | Γ | ϑ | Δ |
ϑ | Δ | ϑ | Γ | Κ | Ι | Δ |
Κ | Δ | Κ | ϑ | Ι | Γ | Δ |
Λ | Λ | Λ | Λ | Λ | Λ | Λ |
* | α | β | δ | ε |
---|---|---|---|---|
α | α | α | α | α |
β | β | β | β | β |
δ | α | α | δ | δ |
ε | α | α | δ | ε |
* | z1 | z2 | z3 | z4 |
---|---|---|---|---|
z1 | z1 | z1 | z1 | z4 |
z2 | z2 | z2 | z2 | z4 |
z3 | z1 | z1 | z3 | z4 |
z4 | z4 | z4 | z4 | z4 |
* | m1 | m2 | m3 | m4 | m5 |
---|---|---|---|---|---|
m1 | m4 | m4 | m1 | m1 | m1 |
m2 | m3 | m3 | m2 | m2 | m2 |
m3 | m2 | m2 | m3 | m3 | m3 |
m4 | m1 | m1 | m4 | m4 | m4 |
m5 | m2 | m2 | m3 | m3 | m5 |
* | x | y | z | u | v |
---|---|---|---|---|---|
x | x | x | x | x | x |
y | u | y | z | u | y |
z | u | z | y | u | z |
u | u | u | u | u | u |
v | u | y | z | u | v |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Yuan, W.; Chen, M.; Smarandache, F. A Kind of Variation Symmetry: Tarski Associative Groupoids (TA-Groupoids) and Tarski Associative Neutrosophic Extended Triplet Groupoids (TA-NET-Groupoids). Symmetry 2020, 12, 714. https://doi.org/10.3390/sym12050714
Zhang X, Yuan W, Chen M, Smarandache F. A Kind of Variation Symmetry: Tarski Associative Groupoids (TA-Groupoids) and Tarski Associative Neutrosophic Extended Triplet Groupoids (TA-NET-Groupoids). Symmetry. 2020; 12(5):714. https://doi.org/10.3390/sym12050714
Chicago/Turabian StyleZhang, Xiaohong, Wangtao Yuan, Mingming Chen, and Florentin Smarandache. 2020. "A Kind of Variation Symmetry: Tarski Associative Groupoids (TA-Groupoids) and Tarski Associative Neutrosophic Extended Triplet Groupoids (TA-NET-Groupoids)" Symmetry 12, no. 5: 714. https://doi.org/10.3390/sym12050714
APA StyleZhang, X., Yuan, W., Chen, M., & Smarandache, F. (2020). A Kind of Variation Symmetry: Tarski Associative Groupoids (TA-Groupoids) and Tarski Associative Neutrosophic Extended Triplet Groupoids (TA-NET-Groupoids). Symmetry, 12(5), 714. https://doi.org/10.3390/sym12050714