Significance of Thermal Slip and Convective Boundary Conditions in Three Dimensional Rotating Darcy-Forchheimer Nanofluid Flow
Abstract
:1. Introduction
2. Formulation
- (1)
- Skin friction:
- (2)
- Local Nusselt and Sherwood numbers:
3. Methodology
4. Analysis of the Solutions
5. Concluding Remarks
- Lorentz force generated by the MHD resulted in reducing trend in both the axial and transverse velocity fields.
- Both the axial and transverse velocity fields greatly declined for larger values of the Forchheimer number.
- The thermal radiation parameter greatly raised the thermal state of the field.
- The chemical reaction part involved in the governing equations showed the opposite trend in the temperature profile for both the chemical reaction parameter and the Arrhenius activation energy parameter, respectively.
- Both the Brownian diffusion and thermophoresis were rising factors for the thermal distribution.
- The augmented Biot number resulted in a rise in the thermal field.
- The augmented thermal slip parameter enhanced the temperature field.
- Stronger Brownian diffusion resulted in a higher concentration of the nanoparticles.
- A declination was noticed for stronger thermophoresis.
- The Arrhenius activation energy gave rise to the concentration field.
- Both the Forchheimer number and porosity factor resulted in enhancement of the skin friction, while both slip parameters resulted in a decline of the skin friction.
- The activation energy enhanced heat flux with a clear reduction in mass flux. The thermal slip factor resulted in a decline of both the heat and mass flux rates.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Akbar, N.S.; Khan, Z.H.; Nadeem, S. Copper nanoparticle analysis for peristaltic flow in a curved channel with heat transfer characteristics. J. Mol. Liq. 2014, 196, 21. [Google Scholar] [CrossRef]
- Turkyilmazoglu, M. Multiple solutions of heat and mass transfer of MHD slip flow for the viscoelastic fluid over a stretching sheet. Int. J. Therm. Sci. 2011, 50, 2264. [Google Scholar] [CrossRef]
- Turkyilmazoglu, M. Dual and triple solutions for MHD slip flow of non-Newtonian fluid over a shrinking surface. Comput. Fluids 2012, 70, 53. [Google Scholar] [CrossRef]
- Mustafa, M.; Khan, J.A. Numerical study of partial slip effects on MHD flow of nanofluids near a convectively heated stretchable rotating disk. J. Mol. Liq. 2017, 234, 287. [Google Scholar] [CrossRef]
- Choi, S.U.S.; Eastman, J.A. Enhancing thermal conductivity of fluids with nanoparti-cles. In Proceedings of the ASME International Mechanical Engineering Congress & Exposisition, American Society of Mechanical Engineers, San Francisco, CA, USA, 12–17 November 1995; Volume 66, pp. 99–105. [Google Scholar]
- Dogonchi, A.S.; Chamkha, A.J.; Ganji, D.D. A numerical investigation of magneto-hydrodynamic natural convection of Cu-water nanofluid in a wavy cavity using CVFEM. J. Therm. Anal. Calorim. 2019, 135, 2599–2611. [Google Scholar] [CrossRef]
- Rasool, G.; Zhang, T.; Shafiq, A. Marangoni effect in second grade forced convective flow of water based nanofluid. J. Adv. Nanotechnol. 2019, 1, 50–61. [Google Scholar] [CrossRef]
- Sarafraz, M.M.; Safaei, M.R. Diurnal thermal evaluation of an evacuated tube solar collector (ETSC) charged with graphene nanoplatelets-methanol nano-suspension. Renew. Energy 2019, 142, 364–372. [Google Scholar] [CrossRef]
- Sarafraz, M.M.; Safaei, M.R.; Tian, Z.; Goodarzi, M.; Filho, E.P.B.; Arjom, M. Thermal Assessment of Nano-Particulate Graphene-Water/Ethylene Glycol (WEG 60:40) Nano-Suspension in a Compact Heat Exchanger. Energies 2019, 12, 1929. [Google Scholar] [CrossRef] [Green Version]
- Goodarzi, H.; Akbari, O.A.; Sarafraz, M.M.; Karchegani, M.M.; Safaei, M.R.; Shabani, G.A.S. Numerical Simulation of Natural Convection Heat Transfer of Nanofluid With Cu, MWCNT, and Al2O3 Nanoparticles in a Cavity With Different Aspect Ratios. J. Thermal Sci. Eng. Appl. 2019, 11, 061020. [Google Scholar] [CrossRef]
- Sarafraz, M.M.; Tlili, I.; Baseer, M.A.; Safaei, M.R. Potential of Solar Collectors for Clean Thermal Energy Production in Smart Cities using Nanofluids: Experimental Assessment and efficiency improvement. Appl. Sci. 2019, 9, 1877. [Google Scholar] [CrossRef] [Green Version]
- Sarafraz, M.M.; Tlili, I.; Tian, Z.; Bakouri, M.; Safaei, M.R. Smart optimization of a thermosyphon heat pipe for an evacuated tube solar collector using response surface methodology (RSM). Phys. A Stat. Mech. Appl. 2019, 534, 122146. [Google Scholar] [CrossRef]
- Tlili, I.; Khan, W.A.; Ramadan, K. MHD flow of nanofluid flow across horizontal circular cylinder: Steady forced convection. J. Nanofluids 2019, 8, 179–186. [Google Scholar] [CrossRef]
- Tlili, I.; Khan, W.A.; Ramadan, K. Entropy generation due to MHD stagnation point flow of a nanofluid on a stretching surface in the presence of radiation. J. Nanofluids 2018, 7, 879–890. [Google Scholar] [CrossRef]
- Rasool, G.; Zhang, T.; Shafiq, A. Second grade nanofluidic flow past a convectively heated vertical Riga plate. Phys. Scr. 2019, 94, 125212. [Google Scholar] [CrossRef]
- Hayat, T.; Hussain, S.; Muhammad, T.; Alsaedi, A.; Ayub, M. Radiative flow of Powell-Eyring nanofluid with convective boundary conditions. Chin. J. Phys. 2017, 55, 1523–1538. [Google Scholar] [CrossRef]
- Rasool, G.; Shafiq, A.; Khalique, C.M. Marangoni forced convective Casson type nanofluid flow in the presence of Lorentz force generated by Riga plate. Discret. Contin. Dyn. Syst. Ser. S 2019, in press. [Google Scholar]
- Sohail, M.; Naz, R.; Abdelsalam, S.I. On the onset of entropy generation for a nanofluid with thermal radiation and gyrotactic microorganisms through 3D flows. Phys. Scr. 2019, 95. [Google Scholar] [CrossRef]
- Sohail, M.; Naz, R. Modified heat and mass transmission models in the magnetohydrodynamic flow of Sutterby nanofluid in stretching cylinder. Phys. A Stat. Mech. Appl. 2020, in press. [Google Scholar] [CrossRef]
- Rasool, G.; Shafiq, A.; Tlili, I. Marangoni convective nano-fluid flow over an electromagnetic actuator in the presence of first order chemical reaction. Heat Transf. Asian Res. 2019. [Google Scholar] [CrossRef]
- Lund, L.A.; Zurni, O.; Khan, I. Analysis of dual solution for MHD flow of Williamson fluid with slippage. Heliyon 2019, 5, e01345. [Google Scholar] [CrossRef] [Green Version]
- Lund, L.A.; Omar, Z.; Khan, I.; Raza, J.; Bakouri, M.; Tlili, I. Stability analysis of Darcy–Forchheimer flow of Casson type nanofluid over an exponential sheet: Investigation of critical points. Symmetry 2019, 11, 412. [Google Scholar] [CrossRef] [Green Version]
- Lund, L.A.; Zurni, O.; Khan, I.; Dero, S. Multiple solutions of Cu-C6H9NaO7 and Ag-C6H9NaO7 nanofluids flow over nonlinear shrinking surface. J. Cent. South Univ. 2019, 26, 1283. [Google Scholar] [CrossRef]
- Goodarzi, M.; Tlili, I.; Tian, Z.; Safaei, M. Efficiency assessment of using graphene nanoplatelets-silver/water nanofluids in microchannel heat sinks with different cross-sections for electronics cooling. Int. J. Numer. Methods Heat Fluid Flow 2019. [Google Scholar] [CrossRef]
- Tlili, I. Effects MHD and Heat Generation on Mixed Convection Flow of Jeffrey Fluid in Microgravity Environment over an Inclined Stretching Sheet. Symmetry 2019, 11, 438. [Google Scholar] [CrossRef] [Green Version]
- Tlili, I.; Alkanhal, T.A. Nanotechnology for water purification: Electrospun nanofibrous membrane in water and wastewater treatment. J. Water Reuse Desalin. 2019, 24. [Google Scholar] [CrossRef]
- Shafiq, A.; Khan, I.; Rasool, G.; Seikh, A.H.; Sherif, E.M. Significance of double stratification in stagnation point flow of third-grade fluid towards a radiative stretching cylinder. Mathematics 2019, 7, 1103. [Google Scholar] [CrossRef] [Green Version]
- Shafiq, A.; Zari, I.; Rasool, G.; Tlili, I.; Khan, T.S. On the MHD Casson axisymmetric Marangoni forced convective flow of nanofluids. Mathematics 2019, 7, 87. [Google Scholar] [CrossRef] [Green Version]
- Rasool, G.; Shafiq, A.; Khan, I.; Baleanu, D.; Nisar, K.S.; Shahzadi, G. Entropy generation and consequences of MHD in Darcy–Forchheimer nanofluid flow bounded by non-linearly stretching surface. Symmetry 2020, 29, 5. [Google Scholar] [CrossRef]
- Wang, C.Y. Stretching a surface in a rotating fluid. Zeitschrift für Angewandte Mathematik und Physik 1988, 39, 177–185. [Google Scholar] [CrossRef]
- Rashid, S.; Hayat, T.; Qayyum, S.; Ayub, M.; Alsaedi, A. Three dimensional rotating Darcy–Forchheimer flow with activation energy. Int. J. Numer. Methods Heat Fluid Flow 2019. [Google Scholar] [CrossRef]
- Hayat, T.; Muhammad, T.; Shehzad, S.A.; Alsaedi, A. Three dimensional rotating flow of Maxwell nanofluid. J. Mol. Liq. 2017, 229, 495–500. [Google Scholar] [CrossRef]
- Hayat, T.; Shah, F.; Khan, M.I.; Alsaedi, A. Framing the performance of heat absorption/generation and thermal radiation in chemically reactive Darcy–Forchheimer flow. Results Phys. 2017, 7, 3390–3395. [Google Scholar] [CrossRef]
- Hayat, T.; Qayyum, S.; Imtiaz, M.; Alsaedi, A. Three-dimensional rotating flow of Jeffrey fluid for Cattaneo-Christov heat flux model. AIP Adv. 2016, 6, 025012. [Google Scholar] [CrossRef]
- Jumah, R.Y.; Fawzi, A.; Abu-Al-Rub, F. Darcy–Forchheimer mixed convection heat and mass transfer in fluid saturated porous media. Int. J. Numer. Methods Heat Fluid Flow 2001, 11, 600–618. [Google Scholar] [CrossRef]
- Rasool, G.; Shafiq, A.; Durur, H. Darcy–Forchheimer relation in Magnetohydrodynamic Jeffrey nanofluid flow over stretching surface. Discret. Contin. Dyn. Syst. Ser. S 2019, accepted. [Google Scholar]
- Rasool, G.; Shafiq, A.; Khalique, C.M.; Zhang, T. Magnetohydrodynamic Darcy Forchheimer nanofluid flow over nonlinear stretching sheet. Phys. Scr. 2019, 94, 105221. [Google Scholar] [CrossRef]
- Rasool, G.; Zhang, T. Darcy–Forchheimer nanofluidic flow manifested with Cattaneo-Christov theory of heat and mass flux over non-linearly stretching surface. PLoS ONE 2019, 14, e0221302. [Google Scholar] [CrossRef]
- Rasool, G.; Zhang, T.; Chamkha, A.J.; Shafiq, A.; Tlili, I.; Shahzadi, G. Entropy Generation and Consequences of Binary Chemical Reaction on MHD Darcy–Forchheimer Williamson Nanofluid Flow Over Non-Linearly Stretching Surface. Entropy 2020, 22, 18. [Google Scholar] [CrossRef] [Green Version]
- Bestman, A.R. Natural convection boundary layer with suction and mass transfer in a porous medium. Int. J. Energy Res. 1990, 14, 389–396. [Google Scholar] [CrossRef]
- Makinde, O.D.; Olanrewaju, P.O.; Charles, W.M. Unsteady convection with chemical reaction and radiative heat transfer past a flat porous plate moving through a binary mixture. Afr. Mat. 2011, 22, 65–78. [Google Scholar] [CrossRef]
- Mustafa, M.; Khan, J.A.; Hayat, T.; Alsaedi, A. Buoyancy effects on the MHD nanofluid flow past a vertical surface with chemical reaction and activation energy. Int. J. Heat Mass Transf. 2017, 108, 1340–1346. [Google Scholar] [CrossRef]
- Rasool, G.; Zhang, T. Characteristics of chemical reaction and convective boundary conditions in Powell-Eyring nanofluid flow along a radiative Riga plate. Heliyon 2019, 5, e01479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasool, G.; Zhang, T.; Shafiq, A.; Durur, H. Influence of chemical reaction on Marangoni convective flow of nanoliquid in the presence of Lorentz forces and thermal radiation: A numerical investigation. J. Adv. Nanotechnol. 2019, 1, 32–49. [Google Scholar] [CrossRef]
- Shafiq, A.; Hammouch, Z.; Turab, A. Impact of radiation in a stagnation point flow of Walters’ B fluid towards a Riga plate. Therm. Eng. Prog. 2018, 6, 27–33. [Google Scholar] [CrossRef]
- Nayak, M.K.; Shaw, S.; Makinde, O.D.; Chamkha, A.J. Effects of homogenous-Heterogeneous reactions on radiative NaCl-CNP nanofluid flow past a convectively heated vertical Riga plate. J. Nanofluids 2018, 7, 657–667. [Google Scholar] [CrossRef]
- Naseem, A.; Shafiq, A.; Zhaoa, L.; Farooq, M.U. Analytical investigation of third grade nanofluidic flow over a riga plate using Cattaneo-Christov model. Results Phys. 2018, 9, 961–969. [Google Scholar] [CrossRef]
- Shafiq, A.; Hammouch, Z.; Sindhu, T.N. Bioconvective MHD flow of tangent hyperbolic nanofluid with newtonian heating. Int. J. Mech. Sci. 2017, 133, 759–766. [Google Scholar] [CrossRef]
- Liao, S.J. Homotopy Analysis Method in Nonlinear Differential Equations; Springer & Higher Education Press: Berlin /Heidelberg, Germany, 2012. [Google Scholar]
- Shafiq, A.; Jabeen, S.; Hayat, T.; Alsaedi, A. Cattaneo-Christov heat flux model for squeezed flow of third grade fluid. Surf. Rev. Lett. 2017, 1750098. [Google Scholar] [CrossRef]
- Naseem, F.; Shafiq, A.; Zhao, L.; Naseem, A. MHD biconvective ‡ow of Powell Eyring nanofluid over stretched surface. AIP Adv. 2017, 7, 065013. [Google Scholar] [CrossRef] [Green Version]
- Shafiq, A.; Sindhu, T.N. Statistical study of hydromagnetic boundary layer flow of Williamson fluid regarding a radiative surface. Results Phys. 2017, 7, 3059–3067. [Google Scholar] [CrossRef]
- Mabood, F.; Shafiq, A.; Hayat, T.; Abelman, S. Radiation effects on stagnation point flow with melting heat transfer and second order slip. Results Phys. 2017, 7, 31–42. [Google Scholar] [CrossRef]
- Hayat, T.; Jabeen, S.; Shafiq, A.; Alsaedi, A. Radiative squeezing flow of second grade fluid with convective boundary conditions. PLoS ONE 2016, 11, e0152555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nayak, M.K. Chemical reaction effect on MHD viscoelastic fluid over a stretching sheet through porous medium. Meccanica 2016, 51, 1699. [Google Scholar] [CrossRef]
- Nayak, M.K.; Dash, G.C.; Singh, L.P. Unsteady Radiative MHD Free Convective Flow and Mass Transfer of a Viscoelastic Fluid Past an Inclined Porous Plate. Arab. J. Sci. Eng. 2015, 40, 3029. [Google Scholar] [CrossRef]
- Bhatti, M.M.; Zeeshan, A.; Ellahi, R. Heat transfer with thermal radiation on MHD particle–fluid suspension induced by metachronal wave. Pramana J. Phys. 2017, 89, 48. [Google Scholar] [CrossRef]
λ | Skin Friction | |||||||
---|---|---|---|---|---|---|---|---|
0.0 | 0.5 | 0.5 | 0.1 | 0.5 | 0.5 | 0.5 | 0.694509 | 0.369163 |
0.2 | 0.727417 | 0.382899 | ||||||
0.4 | 0.747188 | 0.393225 | ||||||
0.0 | 0.692725 | 0.377525 | ||||||
0.5 | 0.727417 | 0.382899 | ||||||
1.0 | 0.757275 | 0.388372 | ||||||
0.0 | 0.685707 | 0.365622 | ||||||
0.5 | 0.727417 | 0.382899 | ||||||
1.0 | 0.870732 | 0.499395 | ||||||
0.0 | 0.743564 | 0.344124 | ||||||
0.4 | 0.326767 | 0.295244 | ||||||
0.8 | 0.233129 | 0.267431 | ||||||
0.1 | 0.0 | 0.725903 | 0.0539441 | |||||
0.5 | 0.727417 | 0.382899 | ||||||
1.0 | 0.729788 | 0.791255 | ||||||
0.0 | 1.34844 | 0.410502 | ||||||
0.5 | 0.727417 | 0.382899 | ||||||
1.0 | 0.510365 | 0.370739 | ||||||
0.0 | 0.728882 | 0.636562 | ||||||
0.5 | 0.727417 | 0.382899 | ||||||
1.0 | 0.726853 | 0.280113 |
Pr | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.0 | 0.5 | 0.5 | 1.0 | 1.0 | 0.3 | 0.2 | 0.1 | 0.5 | 0.3 | 0.5 | 0.2 | 0.3 | 0.314518 | 0.764965 |
0.2 | 0.288237 | 0.773312 | ||||||||||||
0.4 | 0.227716 | 0.782004 | ||||||||||||
0.0 | 0.302424 | 0.76908 | ||||||||||||
0.5 | 0.288237 | 0.773312 | ||||||||||||
1.0 | 0.2758 | 0.776765 | ||||||||||||
0.0 | 0.204117 | 0.778736 | ||||||||||||
0.5 | 0.288237 | 0.773312 | ||||||||||||
1.0 | 0.344522 | 0.782106 | ||||||||||||
1.0 | 0.288237 | 0.773312 | ||||||||||||
2.0 | 0.350164 | 0.791577 | ||||||||||||
3.0 | 0.369261 | 0.851746 | ||||||||||||
1.0 | 0.288237 | 0.773312 | ||||||||||||
1.5 | 0.237309 | 0.815223 | ||||||||||||
2.0 | 0.198657 | 0.872646 | ||||||||||||
0.3 | 0.288237 | 0.773312 | ||||||||||||
0.6 | 0.268343 | 0.821967 | ||||||||||||
0.9 | 0.236591 | 0.840249 | ||||||||||||
0.0 | 0.394603 | 0.652187 | ||||||||||||
0.2 | 0.288237 | 0.773312 | ||||||||||||
0.4 | 0.195891 | 0.879378 | ||||||||||||
1.0 | 0.288237 | 0.773312 | ||||||||||||
1.5 | 0.306753 | 1.00232 | ||||||||||||
2.0 | 0.317076 | 1.19733 | ||||||||||||
0.2 | 0.343959 | 0.427825 | ||||||||||||
0.3 | 0.321331 | 0.566382 | ||||||||||||
0.5 | 0.288237 | 0.773312 | ||||||||||||
0.0 | 0.299917 | 0.696956 | ||||||||||||
0.3 | 0.288237 | 0.773312 | ||||||||||||
0.6 | 0.278423 | 0.83771 | ||||||||||||
0.2 | 0.5 | 0.5 | 1.0 | 1.0 | 0.3 | 0.2 | 0.1 | 0.5 | 0.3 | 0.0 | 0.2 | 0.3 | 0.258141 | 0.964634 |
0.3 | 0.276492 | 0.847455 | ||||||||||||
0.6 | 0.293967 | 0.737371 | ||||||||||||
0.1 | 0.425244 | 0.316425 | ||||||||||||
0.3 | 0.394744 | 0.773723 | ||||||||||||
0.6 | 0.301575 | 0.774264 | ||||||||||||
0.1 | 0.291202 | 0.773487 | ||||||||||||
0.3 | 0.288237 | 0.773312 | ||||||||||||
0.6 | 0.283906 | 0.773093 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shafiq, A.; Rasool, G.; Khalique, C.M. Significance of Thermal Slip and Convective Boundary Conditions in Three Dimensional Rotating Darcy-Forchheimer Nanofluid Flow. Symmetry 2020, 12, 741. https://doi.org/10.3390/sym12050741
Shafiq A, Rasool G, Khalique CM. Significance of Thermal Slip and Convective Boundary Conditions in Three Dimensional Rotating Darcy-Forchheimer Nanofluid Flow. Symmetry. 2020; 12(5):741. https://doi.org/10.3390/sym12050741
Chicago/Turabian StyleShafiq, Anum, Ghulam Rasool, and Chaudry Masood Khalique. 2020. "Significance of Thermal Slip and Convective Boundary Conditions in Three Dimensional Rotating Darcy-Forchheimer Nanofluid Flow" Symmetry 12, no. 5: 741. https://doi.org/10.3390/sym12050741
APA StyleShafiq, A., Rasool, G., & Khalique, C. M. (2020). Significance of Thermal Slip and Convective Boundary Conditions in Three Dimensional Rotating Darcy-Forchheimer Nanofluid Flow. Symmetry, 12(5), 741. https://doi.org/10.3390/sym12050741