Design and Optimization of Plasmon Resonance Sensor Based on Micro–Nano Symmetrical Localized Surface
Abstract
:1. Introduction
2. Materials and Methods
2.1. LSPR Sensor Structure Design
2.2. Variable Method of Controlling Disc Thickness
2.3. Variable Disk Diameter Control Method
3. Discussion and Result
3.1. Comparing with Three Kinds of Structures
3.2. Comparison after Changing the Thickness and Diameter of the Disk Layer
3.3. Dielectric Layer Thickness Influence on the LSPR Sensing Curve
3.4. Effect of Incident Angles on SPR Sensing Curve
3.5. Linear Fitting Model
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kodoyianni, V. Label-free analysis of biomolecular interactions using SPR imagin. Biotechniques 2011, 50, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Brueck, S.R.J.; Diadiuk, V.; Jones, T.; Lenth, W. Enhanced quantum efficiency internal photoemission detectors by grating coupling to surface plasma waves. Appl. Phys. Lett. 1985, 46, 915–917. [Google Scholar] [CrossRef]
- Kretschmann, E.; Raether, H. Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light. Z. Für Nat. A 1968, 23, 2135–2136. [Google Scholar] [CrossRef]
- Harris, R.D.; Wilkinson, J.S. Waveguide surface plasmon resonance sensors. Sens Actuators B Chem. 1995, 29, 261–267. [Google Scholar] [CrossRef] [Green Version]
- Deng, H.Y. A universal macroscopic theory of surface plasma waves and their losses. J. Phys. 2019, 21, 20. [Google Scholar] [CrossRef]
- Yong, W.; Yudong, S.; Chunlan, L.; Yonghui, Z.; Xiangfei, N.; Zhihai, L.; Yu, Z.; Feng, P. Segmented detection SPR sensor based on seven-core fiber. Opt. Express 2017, 25, 21841–21850. [Google Scholar]
- Zhao, Y.; Wu, Q.-l.; Zhang, Y.-N. Simultaneous measurement of salinity, temperature and pressure in seawater using optical fiber SPR sensor. Measurement 2019, 148, 106792. [Google Scholar] [CrossRef]
- Zeng, S.; Baillargeat, D.; Ho, H.-P.; Yong, K.-T. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem. Soc. Rev. 2014, 43, 3426–3452. [Google Scholar] [CrossRef]
- Mihaela., P.; Camelia, B. SPR and SPR imaging: Recent trends in developing nanodevices for detection and real-time monitoring of biomolecular events. Sensors 2016, 16, 870. [Google Scholar]
- Smirnov, Y.; Smolkin, E. On the existence of non-polarized azimuthal-symmetric electromagnetic waves in circular dielectric waveguide filled with nonlinear isotropic homogeneous medium. Wave Motion 2018, 77, 77–90. [Google Scholar] [CrossRef]
- Singh, P. SPR Biosensors: Historical Perspectives and Current Challenges. Sens. Actuators B Chem. 2016, 229, 110–130. [Google Scholar] [CrossRef]
- Singh, M.; Datta, A. LSPR Excitation on Au Nanorings From Integrated Hybrid Plasmonic Aperture Waveguide and Its Application in Methanol Detection in the IR-Band. IEEE Sens. J. 2019, 19, 6119–6125. [Google Scholar] [CrossRef]
- Shi, D.Y.; Liu, G.; Zhang, H.; Ren, W.H.; Wang, Q.S. A three-dimensional modeling method for the trapezoidal cavity and multi-coupled cavity with various impedance boundary conditions. Appl. Acoust. 2019, 154, 213–225. [Google Scholar] [CrossRef]
- Sheng, X.; Liu, J.; Yang, H.; Chen, L.; Li, J.; Liu, H. Optimization of tunable symmetric SPR sensor based on Ag-graphene. Optik 2019, 184, 339–347. [Google Scholar] [CrossRef]
- Schriver, M.; Regan, W.; Gannett, W.J.; Zaniewski, A.M.; Crommie, M.F.; Zettl, A. Graphene as a Long-Term Metal Oxidation Barrier: Worse Than Nothing. ACS Nano 2013, 7, 5763–5768. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-W.; Lee, J.-S.; Lee, S.-W.; Kang, B.-H.; Kwon, J.-B.; Kim, O.-S.; Kim, J.-S.; Kim, E.-S.; Kwon, D.-H.; Kang, S.-W. Easy-to-Fabricate and High-Sensitivity LSPR Type Specific Protein Detection Sensor Using AAO Nano-Pore Size Control. Sensors 2017, 17, 856. [Google Scholar] [CrossRef] [Green Version]
- Jing, J.-Y.; Wang, Q.; Zhao, W.-M.; Wang, B.-T. Long-range surface plasmon resonance and its sensing applications: A review. Opt. Lasers Eng. 2019, 112, 103–118. [Google Scholar] [CrossRef]
- Wang, H.Y.; Song, W.Q.; Zio, E.; Wu, F.; Zhang, Y.Y. Remaining Useful Life Prediction for Lithium-ion Batteries Using Fractional Brownian Motion and Fruit-fly Optimization Algorithm. Measurement 2020, 161, 107904. [Google Scholar] [CrossRef]
- Gao, Y.; Villecco, F.; Li, M.; Song, W. Multi-Scale Permutation Entropy Based on Improved LMD and HMM for Rolling Bearing Diagnosis. Entropy 2017, 19, 176. [Google Scholar] [CrossRef] [Green Version]
- Farmani, A.; Mir, A. Graphene Sensor Based on Surface Plasmon Resonance for Optical Scanning. IEEE Photonics Technol. Lett. 2019, 31, 643–646. [Google Scholar] [CrossRef]
- Dewan, S.; Paliwal, A.; Tomar, M.; Kapoor, A.K.; Tandon, R.P.; Gupta, V. Surface plasmon resonance aided analysis of quantum wells for photonic device applications. Mater. Des. 2018, 150, 94–103. [Google Scholar] [CrossRef]
- Peterson, A.W.; Halter, M.; Tona, A.; Bhadriraju, K.; Plant, A.L. Surface plasmon resonance imaging of cells and surface-associated fibronectin. BMC Cell Biol. 2009, 10, 16. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.Y.; Lee, M.J.; Heo, N.S.; Kim, S.; Oh, J.S.; Lee, Y.; Jeon, E.J.; Moon, H.; Kim, H.S.; Park, T.J.; et al. Cuvette-Type LSPR Sensor for Highly Sensitive Detection of Melamine in Infant Formulas. Sensors 2019, 19, 3839. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Hernández, M.E.; Goicoechea, J.; Arregui, F.J. Hg2+ Optical Fiber Sensor Based on LSPR Generated by Gold Nanoparticles Embedded in LBL Nano-Assembled Coatings. Sensors 2019, 19, 4906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Descrovi, E. Resonant diffraction of symmetric and antisymmetric Bloch surface waves on a corrugated periodic multilayer slab. Opt. Lett. 2009, 34, 1973–1975. [Google Scholar] [CrossRef] [PubMed]
- Song, W.Q.; Cattani, C.; Chi, C.H. Multifractional Brownian Motion and Quantum-Behaved Particle Swarm Optimization for Short Term Power Load Forecasting: An Integrated Approach. Energy 2020, 194, 116847. [Google Scholar] [CrossRef]
- Chen, W.; Hu, X. Intensity modulation in laser with asymmetric optical feedback. Optik 2016, 127, 2083–2085. [Google Scholar] [CrossRef]
- Cennamo, N.; Trigona, C.; Graziani, S.; Zeni, L.; Arcadio, F.; Pasquale, G.D.; Pollicino, A. An Eco-Friendly Disposable Plasmonic Sensor Based on Bacterial Cellulose and Gold. Sensors 2019, 19, 4894. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Song, W.Q.; Li, M.; Kudreyko, A.; Zio, E. Fractional Lévy stable motion: Finite difference iterative forecasting model. Chaos Solitons Fractals 2020, 133, 109632. [Google Scholar] [CrossRef]
- Song, W.Q.; Cheng, X.X.; Cattani, C.; Zio, E. Multifractional Brownian Motion and Quantum-Behaved Partial Swarm Optimization for Bearing Degradation Forecasting. Complexity 2020. [Google Scholar] [CrossRef]
- White, M.; Oveys, I.H.; Fan, X. Liquid-core optical ring-resona.tor sensors. Opt. Lett. 2006, 31, 1319–1321. [Google Scholar] [CrossRef] [PubMed]
- Madani, A.; Naz, E.S.G.; Harazim, S.; Kleinert, M.; Yin, Y.; Ma, L.; Schmidt, O.G. Multiplexing and tuning of a double set of resonant modes in optical microtube cavities monolithically integrated on a photonic chip. Opt. Lett. 2018, 43, 4703–4706. [Google Scholar] [CrossRef] [PubMed]
- Cheema, M.I.; Shi, C.; Armani, A.M.; Kirk, A.G. Optimizing the Signal to Noise Ratio of Microcavity Sensors. IEEE Photonics Technol. Lett. 2004, 26, 2023–2026. [Google Scholar] [CrossRef]
- Abbas, M.; Harazim, S.M.; Quiñones, V.A.B.; Moritz, K.; Andreas, F.; Saei, G.N.E.; Libo, M.; Schmidt, O.G. Optical microtube cavities monolithically integrated on photonic chips for optofluidic sensing. Opt. Lett. 2017, 42, 486. [Google Scholar]
- Zhou, X.; Zhang, L.; Armani, A.M.; Zhang, D.; Duan, X.; Liu, J.; Zhang, H.; Pang, W. On-chip biological and chemical detection with reversed Fano line-shape enabled by embedded microring resonators. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 5200110. [Google Scholar] [CrossRef]
Three Kinds of Structure | ΔRT | Δn | FWHW | FOM |
---|---|---|---|---|
prism + disc | 0.6022 | 0.328 | 0.024 | 772 |
prism + silver film + disc | 0.8171 | 0.242 | 0.011 | 3069 |
prism + silver film + graphene + disc | 0.6914 | 0.276 | 0.018 | 1391 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, F.; Liu, J.; Yang, H.; Kudreyko, A.; Huang, B. Design and Optimization of Plasmon Resonance Sensor Based on Micro–Nano Symmetrical Localized Surface. Symmetry 2020, 12, 841. https://doi.org/10.3390/sym12050841
Yin F, Liu J, Yang H, Kudreyko A, Huang B. Design and Optimization of Plasmon Resonance Sensor Based on Micro–Nano Symmetrical Localized Surface. Symmetry. 2020; 12(5):841. https://doi.org/10.3390/sym12050841
Chicago/Turabian StyleYin, Fengyu, Jin Liu, Haima Yang, Aleksey Kudreyko, and Bo Huang. 2020. "Design and Optimization of Plasmon Resonance Sensor Based on Micro–Nano Symmetrical Localized Surface" Symmetry 12, no. 5: 841. https://doi.org/10.3390/sym12050841
APA StyleYin, F., Liu, J., Yang, H., Kudreyko, A., & Huang, B. (2020). Design and Optimization of Plasmon Resonance Sensor Based on Micro–Nano Symmetrical Localized Surface. Symmetry, 12(5), 841. https://doi.org/10.3390/sym12050841