Conditional Lie–Bäcklund Symmetries and Functionally Generalized Separation of Variables to Quasi-Linear Diffusion Equations with Source
Abstract
:1. Introduction
2. Conditional Lie-Bäcklund Symmetry (6) of Equation (7)
- Case 1. .
- Case 2. .
3. Exact Solutions of Equation (7)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tikhonov, A.N.; Samarskii, A.A. Equations of Mathematical Physics; Nauka: Moscow, Russian, 1972. [Google Scholar]
- Vladimirov, V.S.; Zharinov, V.V. Equations of Mathematical Physics; Fizmatlit: Moscow, Russian, 2000. [Google Scholar]
- Zwillinger, D. Handbook of Differential Equations; Academic: San Diego, CA, USA, 1998. [Google Scholar]
- Polyanin, A.D.; Zaitsev, V.F.; Moussiaux, A. Handbook of First Order Partial Differential Equations; Taylor and Fransis: London, UK, 2002. [Google Scholar]
- Ibragimov, N.H. CRC Handbook of Lie Group to Differential Equations; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Polyanin, A.D.; Vyaz’min, A.V.; Zhurov, A.I.; Kazemin, D.A. Handbook of Exact solutions to Heat- and Mass-Transfer Equations; Faktorial: Moscow, Russian, 1998. [Google Scholar]
- Doyle, P.W.; Vassiliou, P.J. Separation of variables for the 1-dimensional nonlinear diffusion equation. Int. J. Nonl. Mech. 1998, 33, 315–326. [Google Scholar] [CrossRef]
- Galaktionov, V.A. On new exact blow-up solutions for nonlinear heat equations with source and applications. Diff. Int. Eq. 1990, 3, 863–874. [Google Scholar]
- Galaktionov, V.A.; Posashkov, S.A. New exact solutions to parabolic equations with quadratic nonlinearities. USSR Comput. Math. Math. Phys. 1989, 29, 112–119. [Google Scholar] [CrossRef]
- Galaktionov, V.A.; Svirshchevski, S. Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics; Chapman and Hall: London, UK, 2007. [Google Scholar]
- Cherniha, R. New non-Lie ansätze and exact solutions of nonlinear reaction-diffusion-convection equations. J. Phys. A Math. Gen. 1998, 31, 8179–8198. [Google Scholar] [CrossRef]
- Samarskii, A.A.; Galaktionov, V.A.; Kurdyumov, S.P.; Mikhailov, A.P. Blow-Up in Quasilinear Parabolic Equations; Walter de Gruyter Co.: Berlin, Germany, 1995. [Google Scholar]
- King, J.R. Exact polynomial solutions to some nonliner diffusion equations. Phys. D 1993, 64, 35–65. [Google Scholar] [CrossRef]
- Qu, C.Z.; Zhang, S.L.; Liu, R.C. Separation of variables and exaxt solutions to quasilinear diffusion equations with nonlinear source. Phys. D 2000, 144, 97–123. [Google Scholar] [CrossRef]
- Hill, J.M.; Avagliano, A.J.; Edwards, M.P. Some exact results for nonlinear diffusion with absorption. IMA J. Appl. Math. 1992, 48, 283–304. [Google Scholar] [CrossRef]
- Clarkson, P.A.; Mansfield, E.L. symmetry reductions and exact solutions of a class of nonlinear heat equations. Phys. D 1993, 70, 250–288. [Google Scholar] [CrossRef] [Green Version]
- Arrigo, D.J.; Hill, J.M. Nonclassical symmetries for nonlinear diffusion and absorption. Stud. Appl. Math. 1995, 94, 21–39. [Google Scholar] [CrossRef]
- Zhdanov, R.Z. Conditional Lie–Bäcklund symmetry and reduction of evolution equation. J. Phys. A 1995, 28, 3841–3850. [Google Scholar] [CrossRef] [Green Version]
- Fokas, A.S.; Liu, Q.M. Nonlinear interaction of traveling waves of nonintegrable equations. Phys. Rev. Lett. 1994, 72, 3293–3296. [Google Scholar] [CrossRef]
- Qu, C.Z. Group classification and generalized conditional symmetry reduction of the nonlinear diffusion-convection equation with a nonlinear source. Stud. Appl. Math. 1997, 99, 107–136. [Google Scholar] [CrossRef]
- Qu, C.Z. Exact solutions to nonlinear diffusion equations obtained by generalized conditional symmetry. IMA J. Appl. Math. 1999, 62, 283–302. [Google Scholar]
- Bluman, G.W.; Reid, J.D.; Kumei, S. New classes of symmetries for partial differential equations. J. Math. Phys. 1998, 29, 806–812. [Google Scholar] [CrossRef]
- Newell, A.C.; Tabor, M.; Zeng, Y.B. A unified approach to Painlevé expansions. Phys. D 1987, 29, 1–68. [Google Scholar] [CrossRef]
- Kaptsov, O.V.; Verevkin, I.V. Differential constraints and exact solutions of nonlinear diffusion equations. J. Phys. A Math. Gen. 2003, 36, 1401–1414. [Google Scholar] [CrossRef] [Green Version]
- Galaktionov, V.A.; Posashkov, S.A. New explicit solutions of quasi-linear heat equations with general first-order sign-invariants. Phys. D 1996, 99, 217–236. [Google Scholar] [CrossRef]
- Galaktionov, V.A. Invariant subspaces and new explicit solutions to evolution equations with quadratic nonlinearities. Proc. R. Soc. Edinb. 1995, 125, 225–246. [Google Scholar] [CrossRef]
- King, J.R. Exact similarity solutions to some nonlinear diffusion equations. J. Phys. A Math. Gen. 1990, 23, 3681–3697. [Google Scholar] [CrossRef]
- Burgan, J.R.; Munier, A.; Feix, M.R.; Fijalkow, E. Homology and the nonlinear heat diffusion equation. SIAM J. Appl. Math. 1984, 44, 11–18. [Google Scholar] [CrossRef]
- Hood, S. On direct, implicit reductions of a nonlinear diffusion equation with an arbitrary function- generalizations of Clarkson’s and Kruskal’s method. IMA J. Appl. Math. 2000, 64, 223–244. [Google Scholar] [CrossRef]
- Kannan, R.; Zhang, Z.J. A study of viscous flux formulations for a p-multigrid spectral volume Navier Stokes solver. J. Sci. Comp. 2009, 41, 165–199. [Google Scholar] [CrossRef]
- Cherniha, R.; Serov, M.; Pliukhin, O. Nonlinear Reaction-Diffusion-Convection Equations: Lie and Conditional Symmetry, Exact Solutions and Their Applications; Chapman and Hall/CRC Press: New York, NY, USA, 2018. [Google Scholar]
- Bertsch, M.; Kersner, R.; Peletier, L.A. Positivity versus localization in degenerate diffusion equations. Nonl. Anal. TMA 1985, 9, 987–1008. [Google Scholar] [CrossRef]
- Svirshchevskii, S.R. Nonlinear differential operator of first and second order possessing invarinant linear spaces of maximal dimension. Theor. Math. Phys. 1995, 105, 1346–1353. [Google Scholar] [CrossRef]
- Ji, L.N.; Qu, C.Z. Conditional Lie–Bäcklund symmetries and invariant subspaces to nonlinear diffusion equations with convection and source. Stud. Appl. Math. 2013, 131, 266–301. [Google Scholar] [CrossRef]
- Kersner, R. Some properties of generalized solutions of quasilinear degenerate parabolic equations. Acta Math. Acad. Sci. Hungar. 1978, 32, 301–330. [Google Scholar]
- Cherniha, R.; Pliukhin, O. New conditional symmetries and exact solutions of reaction-diffusion-convection equations with exponential nonlinearities. J. Math. Anal. Appl. 2013, 403, 23–37. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Ji, L. Conditional Lie–Bäcklund Symmetries and Functionally Generalized Separation of Variables to Quasi-Linear Diffusion Equations with Source. Symmetry 2020, 12, 844. https://doi.org/10.3390/sym12050844
Wang R, Ji L. Conditional Lie–Bäcklund Symmetries and Functionally Generalized Separation of Variables to Quasi-Linear Diffusion Equations with Source. Symmetry. 2020; 12(5):844. https://doi.org/10.3390/sym12050844
Chicago/Turabian StyleWang, Rui, and Lina Ji. 2020. "Conditional Lie–Bäcklund Symmetries and Functionally Generalized Separation of Variables to Quasi-Linear Diffusion Equations with Source" Symmetry 12, no. 5: 844. https://doi.org/10.3390/sym12050844
APA StyleWang, R., & Ji, L. (2020). Conditional Lie–Bäcklund Symmetries and Functionally Generalized Separation of Variables to Quasi-Linear Diffusion Equations with Source. Symmetry, 12(5), 844. https://doi.org/10.3390/sym12050844