A Dual Channel Medium Access Control (MAC) Protocol for Underwater Acoustic Sensor Networks Based on Directional Antenna
Abstract
:1. Introduction
2. Related Works
2.1. Contention-Based
2.1.1. Random Access
2.1.2. Handshaking
2.2. Hybrid
3. MAC Issues with Directional Antenna
3.1. Hidden Terminal Problem
3.2. Deafness Problem
4. Proposed Protocol Description
4.1. Antenna Model
4.2. Neighbor Discovery and Directional Network Allocation Vector
4.3. Channel Busy Prompt Message
4.4. Protocol Process and Example
5. Performance Evaluation
5.1. Linear Networks
5.2. Grid Networks
5.3. Random Distribution Networks
6. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Qiao, G.; Zhao, Y.J.; Liu, S.Z.; Ahmed, N. Doppler scale estimation for varied speed mobile frequency-hopped binary frequency-shift keying underwater acoustic communication. J. Acoust. Soc. Am. 2019, 146, 998–1004. [Google Scholar] [CrossRef]
- Che, X.; Wells, I.; Dickers, G.; Kear, P. TDMA frame design for a prototype underwater RF communication network. Ad Hoc Netw. 2012, 10, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Sahu, S.K.; Shanmugam, P. A theoretical study on the impact of particle scattering on the channel characteristics of underwater optical communication system. Opt. Commun. 2018, 408, 3–14. [Google Scholar] [CrossRef]
- Luo, J.; Fan, L.; Wu, S.; Yan, X. Research on Localization Algorithms Based on Acoustic Communication for Underwater Sensor Networks. Sensors 2018, 18, 67. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Xi, R.; Wang, H.; Jing, L.; Shi, W.; Zhang, Q. Single Carrier with Frequency Domain Equalization for Synthetic Aperture Underwater Acoustic Communications. Sensors 2017, 17, 1584. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Martinez, J.; Chaus, J.M.; Eckert, M. A Survey on Underwater Acoustic Sensor Network Routing Protocols. Sensors 2016, 16, 414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanson, F.; Radic, S. High bandwidth underwater optical communication. Appl. Opt. 2008, 47, 277–283. [Google Scholar] [CrossRef]
- Santos, R.; Orozco, J.; Ochoa, S.F.; Meseguer, R.; Eggly, G.; Pistonesi, M.F. A MAC Protocol to Support Monitoring of Underwater Spaces. Sensors 2016, 16, 984. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.; Salleh, M.; Channa, M.I. Routing protocols for underwater wireless sensor networks based on data forwarding: A review. Telecommun. Syst. 2017, 65, 139–153. [Google Scholar] [CrossRef]
- Sendra, S.; Lloret, J.; Jimenez, J.M.; Ghafoor, K.Z. Underwater Ad Hoc Wireless Communication for Video Delivery. Wirel. Pers. Commun. 2017, 96, 5123–5144. [Google Scholar] [CrossRef]
- Maki, T.; Matsuda, T.; Sakamaki, T.; Ura, T.; Kojima, J. Navigation Method for Underwater Vehicles Based on Mutual Acoustical Positioning With a Single Seafloor Station. IEEE J. Ocean. Eng. 2013, 38, 167–177. [Google Scholar] [CrossRef]
- Stojanovic, M.; Preisig, J. Underwater Acoustic Communication Channels: Propagation Models and Statistical Characterization. IEEE Commun. Mag. 2009, 47, 84–89. [Google Scholar] [CrossRef]
- Chitre, M.; Shahabudeen, S.; Stojanovic, M. Underwater acoustic communications and networking: Recent advances and future challenges. Mar. Technol. Soc. J. 2008, 42, 103–116. [Google Scholar] [CrossRef]
- Zikria, Y.; Afzal, M.K.; Kim, S.W. Internet of Multimedia Things (IoMT): Opportunities, Challenges and Solutions. Sensors 2020, 20, 2334. [Google Scholar] [CrossRef]
- Noh, Y.; Lee, U.; Han, S.; Wang, P.; Torres, D.; Kim, J.; Gerla, M. DOTS: A Propagation Delay-Aware Opportunistic MAC Protocol for Mobile Underwater Networks. IEEE Trans. Mob. Comput. 2014, 13, 766–782. [Google Scholar] [CrossRef]
- Zhu, Y.B.; Peng, Z.; Cui, J.H.; Chen, H.F. Toward Practical MAC Design for Underwater Acoustic Networks. IEEE Trans. Mob. Comput. 2015, 14, 872–886. [Google Scholar] [CrossRef]
- Su, Y.S.; Zhu, Y.B.; Mo, H.N.; Cui, J.H.; Jin, Z.G. A joint power control and rate adaptation MAC protocol for underwater sensor networks. Ad Hoc Netw. 2015, 26, 36–49. [Google Scholar] [CrossRef]
- Ramanathan, R.; Redi, J.; Santivanez, C.; Wiggins, D.; Polit, S. Ad hoc networking with directional antennas: A complete system solution. IEEE J. Sel. Areas Commun. 2005, 23, 496–506. [Google Scholar] [CrossRef]
- Dai, H.N.; Ng, K.W.; Li, M.L.; Wu, M.Y. An overview of using directional antennas in wireless networks. Int. J. Commun. Syst. 2013, 26, 413–448. [Google Scholar] [CrossRef]
- Rhee, I.; Warrier, A.; Aia, M.; Min, J.; Sichitiu, M.L. Z-MAC: A hybrid MAC for wireless sensor networks. IEEE/ACM Trans. Netw. 2008, 16, 511–524. [Google Scholar] [CrossRef]
- Otal, B.; Alonso, L.; Verikoukis, C. Highly Reliable Energy-Saving MAC for Wireless Body Sensor Networks in Healthcare Systems. IEEE J. Sel. Areas Commun. 2009, 27, 553–565. [Google Scholar] [CrossRef]
- Vieira, L.F.M.; Kong, J.; Lee, U.; Gerla, M. Analysis of aloha protocols for underwater acoustic sensor networks. In Proceedings of the ACM Wuwnet’06, Los Angeles, CA, USA, 25 September 2006. [Google Scholar]
- Zhou, Y.; Chen, K.; He, J.; Guan, H. Enhanced slotted aloha protocols for underwater sensor networks with large propagation delay. In Proceedings of the First International Conference on Embedded Networked Sensor Systems, Yokohama, Japan, 15–18 May 2011; pp. 1–5. [Google Scholar]
- Petrioli, C.; Petroccia, R.; Stojanovic, M. A comparative performance evaluation of MAC protocols for underwater sensor networks. In Proceedings of the Oceans 2008, Quebec City, QC, Canada, 15–18 September 2008; pp. 1–10. [Google Scholar]
- Dou, F.; Jin, Z.; Su, Y.; Liu, J. WSF-MAC: A weight-based spatially fair MAC protocol for underwater sensor networks. In Proceedings of the 2012 2nd International Conference on Consumer Electronics, Communications and Networks, Yichang, China, 21–23 April 2012; pp. 3708–3711. [Google Scholar]
- Yang, M.; Gao, M.; Foh, C.; Cai, J.; Chatzimisios, P. DC-MAC: A Data-centric Multi-hop MAC protocol for Underwater Acoustic Sensor Networks. In Proceedings of the Computers and Communications (ISCC), Corfu, Greece, 28 June–1 July 2011; pp. 491–496. [Google Scholar]
- Tan, H.X.; Seah, W.K.G. Distributed CDMA-based MAC protocol for underwater sensor networks. In Proceedings of the IEEE 32nd Conference Local Computer Networks, Dublin, Ireland, 15–18 October 2007; pp. 26–36. [Google Scholar]
- Pompili, D.; Melodia, T.; Akyildiz, I.F. A CDMA-Based Medium Access Control for Underwater Acoustic Sensor Networks. IEEE Trans. Wirel. Commun. 2009, 8, 1899–1909. [Google Scholar] [CrossRef]
- Pompili, D.; Akyildiz, I.F. Overview of Networking-Protocols for Underwater Wireless Communications. IEEE Commun. Mag. 2009, 47, 97–102. [Google Scholar] [CrossRef]
- Kredo, K.B., II; Mohapatra, P. A hybrid medium access control protocol for underwater wireless networks. In Proceedings of the Annual International Conference on Mobile Computing and Networking, Montréal, QC, Canada, 14 September 2007; pp. 33–40. [Google Scholar]
- Diamant, R.; Lampe, L. Spatial Reuse Time-Division Multiple Access for Broadcast Ad Hoc Underwater Acoustic Communication Networks. IEEE J. Ocean. Eng. 2011, 36, 172–185. [Google Scholar] [CrossRef]
- Diamant, R.; Lampe, L. A hybrid spatial reuse MAC protocol for ad-hoc underwater acoustic communication networks. In Proceedings of the Communications Workshops, Capetown, South Africa, 23–27 May 2010; pp. 1–5. [Google Scholar]
- Butler, A.L.; Butler, J.L.; Dalton, W.L.; Rice, J.A. Multimode directional telesonar transducer. In Proceedings of the OCEANS 2000 MTS/IEEE - WHERE MARINE SCIENCE AND TECHNOLOGY MEET, Providence, RI, USA, 11–14 September 2000; pp. 1289–1292. [Google Scholar]
- Van den Abeele, F.; Haxhibeqiri, J.; Moerman, I.; Hoebeke, J. Scalability Analysis of Large-Scale LoRaWAN Networks in ns-3. IEEE Internet Things J. 2017, 4, 2186–2198. [Google Scholar] [CrossRef] [Green Version]
- Rana, M.K.; Sardar, B.; Mandal, S.; Saha, D. Implementation and performance evaluation of a mobile IPv6 (MIPv6) simulation model for ns-3. Simul. Model. Pract. Theory 2017, 72, 1–22. [Google Scholar] [CrossRef]
- Dijkstra, E.W. A Note on Two Problems in Connexion with Graphs. Numer. Math. 1959, 1, 269–271. [Google Scholar] [CrossRef] [Green Version]
Category | Protocol | Aim | Proposed Solution | Pros and Cons | |
---|---|---|---|---|---|
CONTENTION-BASED | Random Access | ISA-ALOHA | Minimize the adverse impact of propagation delay | Adjust time slot values according to time delay estimations | Strong robustness; high requirements for time delay estimation |
PDAP | Maximizing the bandwidth utilization | Keep track of the neighboring transmissions | Increased channel utilization; cannot reliably acquire the channel | ||
Handshaking | WSF-MAC | Overcome the issue of spatial unfairness | Send the underwater reply packet for a silence duration time | Achieved a better performance in terms of the spatial fairness; different competition thresholds cause different fairness | |
DC-MAC | Enhance the performance on throughput and average end-to-end delay | Multi-channel and dynamic collision-free polling strategy | Eliminated the hidden terminal problem and improved network performance; not suitable to multiple sink nodes | ||
HYBRID | PLAN | Use in half-duplex underwater acoustic sensor networks | Utilize the CDMA as the underlying medium access technique | Minimize multipath and Doppler effects; suffer from the missing receiver problem | |
UW-MAC | High network throughput, low energy consumption | Transmitter adjusts pseudo-random sequences length and signal power | Reduce multiple access interference; require all nodes know other nodes’ multiple access interference | ||
H-MAC | Yield the benefits from contention-free and random access protocols | Divide a time frame into two time slots | Little power consumption; not be optimal for dense and heavily loaded network | ||
HSR-TDMA | Improve network throughput | Spatial reuse | Less sensitive to topology changes; strict synchronization among is required |
Acronym and Notation | Description |
---|---|
UASNs | Underwater acoustic sensor networks |
TSNs | Terrestrial sensor networks |
RF | Radio frequency |
MAC | Medium access control |
RTS | Ready to send |
CTS | Clear to send |
ACK | Acknowledgement |
DRTS | Directional ready to send |
DCTS | Directional clear to send |
NLT | Neighbor information table |
GO | Antenna gain of the omnidirectional mode |
GD | Antenna gain of the directional mode |
Beam Number | Neighbor Nodes ID | Available | Duration |
---|---|---|---|
1 | - | - | - |
2 | - | - | - |
3 | A, B | NO | - |
4 | D | YES | 15 s |
Parameter | Value |
---|---|
Speed of sound | 1500 m/s |
Directional antenna beams number | 4 |
Maximum DATA package retransmission number | 2 |
Channel busy prompt message size | 16 bits |
Control packet (i.e., DRTS, DCTS, ACK) size | 128 bits |
DATA packet size | 2400 bits |
Transmission rate | 1600 bps |
Center frequency | 11 kHz |
Bandwidth | 6 kHz |
Node Number | MACA | D-MAC | DADC-MAC |
---|---|---|---|
1 | 61.45 | 120.50 | 126.50 |
4 | 62.7 | 120.55 | 119.05 |
Total | 124.15 | 241.05 | 245.55 |
Node Number | MACA | D-MAC | DADC-MAC |
---|---|---|---|
2 | 1.55 | 68.40 | 115.25 |
4 | 118.10 | 91.00 | 117.80 |
Total | 119.65 | 159.40 | 233.05 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Qiao, G.; Hu, Q.; Zhang, J.; Du, G. A Dual Channel Medium Access Control (MAC) Protocol for Underwater Acoustic Sensor Networks Based on Directional Antenna. Symmetry 2020, 12, 878. https://doi.org/10.3390/sym12060878
Yang J, Qiao G, Hu Q, Zhang J, Du G. A Dual Channel Medium Access Control (MAC) Protocol for Underwater Acoustic Sensor Networks Based on Directional Antenna. Symmetry. 2020; 12(6):878. https://doi.org/10.3390/sym12060878
Chicago/Turabian StyleYang, Jianmin, Gang Qiao, Qing Hu, Jiarong Zhang, and Guangbin Du. 2020. "A Dual Channel Medium Access Control (MAC) Protocol for Underwater Acoustic Sensor Networks Based on Directional Antenna" Symmetry 12, no. 6: 878. https://doi.org/10.3390/sym12060878
APA StyleYang, J., Qiao, G., Hu, Q., Zhang, J., & Du, G. (2020). A Dual Channel Medium Access Control (MAC) Protocol for Underwater Acoustic Sensor Networks Based on Directional Antenna. Symmetry, 12(6), 878. https://doi.org/10.3390/sym12060878