Supersymmetry and Exceptional Points
Abstract
:1. Introduction
2. The Concept of Hiddenly Hermitian Hamiltonians
2.1. Non-Hermitian Physics: Closed vs. Open Systems
2.2. Triplets of Hilbert Spaces: A Key to the Unitarity Paradox
2.3. Non-Uniqueness of Hilbert Space
3. The Concept of Exceptional Points
3.1. The Birth of the Concept in Perturbation Theory
3.2. EPs in Two by Two Effective Hamiltonians
3.3. EPs in Crypto-Hermitian Models with Local Potentials
3.3.1. Regularized Harmonic Oscillator
3.3.2. Regularized Three-Body Calogero Model
4. The Concept of Hiddenly Hermitian Supersymmetry
4.1. Harmonic-Oscillator Example
4.1.1. Central Interval of with and .
4.1.2. The Right Half-Line of with .
4.1.3. The left half-line of with and .
4.2. Regularized Hermitian Limit
5. Discussion
5.1. SUSY and Local Potentials
5.2. Analyticity and EPs
5.3. Outlook
Funding
Acknowledgments
Conflicts of Interest
References
- Available online: http://benasque.org/2010susyqm/ (accessed on 12 May 2020).
- Available online: https://www.emis.de/journals/SIGMA/SUSYQM2010.html (accessed on 12 May 2020).
- Available online: http://www.nithep.ac.za/2g6.htm (accessed on 28 January 2018).
- Available online: http://gemma.ujf.cas.cz/~znojil/conf/2010.htm (accessed on 12 May 2020).
- Wu, J.-D.; Znojil, M. Pseudo-Hermitian Hamiltonians in Quantum Physics (Preface). Int. J. Theor. Phys. 2011, 50, 953–954. [Google Scholar] [CrossRef] [Green Version]
- Kato, T. Perturbation Theory for Linear Operators; Springer: Berlin, Germany, 1966. [Google Scholar]
- Heiss, W.D. The physics of exceptional points. J. Phys. A Math. Theor. 2012, 45, 444016. [Google Scholar] [CrossRef]
- Christodoulides, D.; Yang, J.-K. (Eds.) Parity-Time Symmetry and Its Applications; Springer: Singapore, 2018. [Google Scholar]
- Mostafazadeh, A. Pseudo-Hermitian Quantum Mechanics. Int. J. Geom. Meth. Mod. Phys. 2010, 7, 1191–1306. [Google Scholar] [CrossRef] [Green Version]
- Dieudonné, J. Quasi-Hermitian operators. In Proceedings of the International Symposium on Linear Spaces, Jerusalem, Israel, 5–12 July 1961; Pergamon: Oxford, UK, 1961; pp. 115–122. [Google Scholar]
- Scholtz, F.G.; Geyer, H.B.; Hahne, F.J.W. Quasi-Hermitian Operators in Quantum Mechanics and the Variational Principle. Ann. Phys. 1992, 213, 74. [Google Scholar] [CrossRef]
- Bender, C.M. Making Sense of Non-Hermitian Hamiltonians. Rep. Prog. Phys. 2007, 70, 947. [Google Scholar] [CrossRef] [Green Version]
- Bender, C.M. (Ed.) PT Symmetry in Quantum and Classical Physics; World Scientific: Singapore, 2018. [Google Scholar]
- Duplij, S.; Siegel, W.; Bagger, J. (Eds.) Concise Encyclopedia of Supersymmetry; Springer: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Moiseyev, N. Non-Hermitian Quantum Mechanics; CUP: Cambridge, UK, 2011. [Google Scholar]
- Rotter, I.; Bird, J.P. A review of progress in the physics of open quantum systems: Theory and experiment. Rep. Prog. Phys. 2015, 78, 114001. [Google Scholar] [CrossRef] [PubMed]
- Buslaev, V.; Grecchi, V. Equivalence of unstable anharmonic oscillators and double wells. J. Phys. A Math. Gen. 1993, 26, 5541. [Google Scholar] [CrossRef]
- Bender, C.M.; Boettcher, S. Real spectra in non-Hermitian Hamiltonians having symmetry. Phys. Rev. Lett. 1998, 80, 5243. [Google Scholar] [CrossRef] [Green Version]
- Bender, C.M.; Milton, K.A. Nonperturbative Calculation of Symmetry Breaking in Quantum Field Theory. Phys. Rev. D 1997, 55, R3255. [Google Scholar] [CrossRef] [Green Version]
- Cham, J. Top 10 physics discoveries of the last 10 years. Nat. Phys. 2015, 11, 799. [Google Scholar] [CrossRef] [Green Version]
- Stone, M.H. On one-parameter unitary groups in Hilbert Space. Ann. Math. 1932, 33, 643–648. [Google Scholar] [CrossRef]
- Dyson, F.J. General theory of spin-wave interactions. Phys. Rev. 1956, 102, 1217–1230. [Google Scholar] [CrossRef]
- Znojil, M. Three-Hilbert-space formulation of quantum mechanics. SIGMA Symmetry Integr. Geom. Methods Appl. 2009, 5, 001. [Google Scholar] [CrossRef]
- Mostafazadeh, A. Conceptual Aspects of PT-Symmetry and Pseudo-Hermiticity: A status report. Phys. Scr. 2010, 82, 038110. [Google Scholar] [CrossRef]
- Smilga, A.V. Cryptogauge symmetry and cryptoghosts for crypto-Hermitian Hamiltonians. J. Phys. A Math. Theor. 2008, 41, 244026. [Google Scholar] [CrossRef]
- Bagarello, F.; Gazeau, J.-P.; Szafraniec, F.; Znojil, M. (Eds.) Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Znojil, M. On the role of the normalization factors κn and of the pseudo-metric in crypto-Hermitian quantum models. arXiv 2008, arXiv:0710.4432v3. [Google Scholar] [CrossRef]
- Znojil, M.; Semorádová, I.; Rŭžička, F.; Moulla, H. Leghrib, I. Problem of the coexistence of several non-Hermitian observables in PT-symmetric quantum mechanics. Phys. Rev. A 2017, 95, 042122. [Google Scholar] [CrossRef] [Green Version]
- Krejčiřík, D.; Lotoreichik, V.; Znojil, M. The minimally anisotropic metric operator in quasi-hermitian quantum mechanics. Proc. Roy. Soc. A Math. Phys. Eng. Sci. 2018, 474, 20180264. [Google Scholar] [CrossRef] [Green Version]
- Berry, M.V. Physics of non-Hermitian degeneracies. Czech. J. Phys. 2004, 54, 1039–1047. [Google Scholar] [CrossRef]
- Znojil, M. Passage through exceptional point: Case study. Proc. Roy. Soc. A Math. Phys. Eng. Sci. 2020, 476, 20190831. [Google Scholar] [CrossRef] [Green Version]
- Dorey, P.; Dunning, C.; Negro, S.; Tateo, R. Geometric aspects of the ODE/IM correspondence. J. Phys. A Math. Theor. 2020. [Google Scholar] [CrossRef] [Green Version]
- Dorey, P.; Dunning, C.; Tateo, R. Spectral equivalences, Bethe Ansatz equations, and reality properties in PT-symmetric quantum mechanics. J. Phys. A Math. Gen. 2001, 34, 5679–5703. [Google Scholar] [CrossRef] [Green Version]
- Dorey, P.; Dunning, C.; Tateo, R. Supersymmetry and the spontaneous breakdown of PT symmetry. J. Phys. A Math. Gen. 2001, 34, L391. [Google Scholar] [CrossRef]
- Bender, C.M.; Wu, T.T. Anharmonic oscillator. Phys. Rev. 1969, 184, 1231. [Google Scholar] [CrossRef]
- Mostafazadeh, A. Metric operator in pseudo-Hermitian quantum mechanics and the imaginary cubic potential. J. Phys. A Math. Gen. 2006, 39, 10171–10188. [Google Scholar] [CrossRef]
- Znojil, M. PT symmetric harmonic oscillators. Phys. Lett. A 1999, 259, 220–223. [Google Scholar] [CrossRef] [Green Version]
- Znojil, M. Conservation of pseudo-norm in PT symmetric quantum mechanics. arXiv 2011, arXiv:math-ph/0104012. [Google Scholar]
- Borisov, D.I. Eigenvalue collision for PT-symmetric waveguide. Acta Polytechnica 2014, 54, 93. [Google Scholar] [CrossRef]
- Znojil, M.; Borisov, D.I. Two patterns of PT-symmetry breakdown in a non-numerical six-state simulation. Ann. Phys. 2018, 394, 40. [Google Scholar] [CrossRef] [Green Version]
- Znojil, M.; Tater, M. Complex Calogero model with real energies. J. Phys. A Math. Gen. 2001, 34, 1793–1803. [Google Scholar] [CrossRef]
- Van Diejen, J.F.; Vinet, L. (Eds.) Calogero-Moser-Sutherland Models; CRM Series in Mathematical Physics; Springer: New York, NY, USA, 2000. [Google Scholar]
- Fring, A.; Znojil, M. PT-symmetric deformations of Calogero models. J. Phys. A Math. Theor. 2008, 41, 194010. [Google Scholar] [CrossRef] [Green Version]
- Gelfand, Y.A.; Likhtman, E.P. Extension of algebra of Poincare group generators and violation of p-invariance. JETP Lett. 1971, 13, 323–328. [Google Scholar]
- Witten, E. Dynamical breaking of supersymmetry. Nucl. Phys. B 1981, 188, 513. [Google Scholar] [CrossRef]
- Cooper, F.; Khare, A.; Sukhatme, U. Supersymmetry and quantum-mechanics. Phys. Rep. 1995, 251, 267. [Google Scholar] [CrossRef] [Green Version]
- Bagchi, B. Supersymmetry in Quantum and Classical Mechanics; Chapman: London, UK; Hall/CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Bender, C.M.; Milton, K.A. Model of Supersymmetric Quantum Field Theory with Broken Parity Symmetry. Phys. Rev. D 1998, 57, 3595. [Google Scholar] [CrossRef] [Green Version]
- Andrianov, A.A.; Ioffe, M.V.; Cannata, F.; Dedonder, J.P. SUSY quantum mechanics with complex superpotentials and real energy spectra. Int. J. Mod. Phys. A 1999, 14, 2675. [Google Scholar] [CrossRef] [Green Version]
- Znojil, M.; Cannata, F.; Bagchi, B.; Roychoudhury, R. Supersymmetry without hermiticity within PT symmetric quantum mechanics. Phys. Lett. B 2000, 483, 284–289. [Google Scholar] [CrossRef] [Green Version]
- Krejčiřík, D.; Siegl, P.; Tater, M.; Viola, J. Pseudospectra in non-Hermitian quantum mechanics. J. Math. Phys. 2015, 56, 103513. [Google Scholar] [CrossRef]
- Znojil, M. Admissible perturbations and false instabilities in PT-symmetric quantum systems. Phys. Rev. A 2018, 97, 032114. [Google Scholar] [CrossRef] [Green Version]
- Znojil, M. Non-Hermitian SUSY and singular, PT-symmetrized oscillators. J. Phys. A Math. Gen. 2002, 35, 2341–2352. [Google Scholar] [CrossRef] [Green Version]
- Jevicki, A.; Rodrigues, J. Singular potentials and supersymmetry breaking. Phys. Lett. B 1984, 146, 55. [Google Scholar] [CrossRef]
- Siegl, P.; Krejčiřík, D. On the metric operator for the imaginary cubic oscillator. Phys. Rev. D 2012, 86, 121702. [Google Scholar] [CrossRef] [Green Version]
- Antoine, J.-P.; Trapani, C. Metric Operators, Generalized Hermiticity and Lattices of Hilbert Spaces. In Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects; Bagarello, F., Gazeau, J.-P., Szafraniec, F., Znojil, M., Eds.; Wiley: Hoboken, NJ, USA, 2015; pp. 345–402. [Google Scholar]
- Alvarez, G. Bender-Wu branch points in the cubic oscillator. J. Phys. A Math. Gen. 1995, 28, 4589–4598. [Google Scholar] [CrossRef]
- Bender, C.M.; Turbiner, A. Analytic continuation of eigenvalue problems. Phys. Lett. 1993, 173, 442. [Google Scholar] [CrossRef]
- Lévai, G.; Znojil, M. Systematic search for PT symmetric potentials with real energy spectra. J. Phys. A Math. Gen. 2000, 33, 7165–7180. [Google Scholar] [CrossRef]
- Znojil, M. Non-Self-Adjoint Operators in Quantum Physics: Ideas, People and Trebnds. In Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects; Bagarello, F., Gazeau, J.-P., Szafraniec, F., Znojil, M., Eds.; Wiley: Hoboken, NJ, USA, 2015; pp. 7–58. [Google Scholar]
- Bishop, R.F.; Znojil, M. Non-Hermitian coupled cluster method for non-stationary systems and its interaction-picture reinterpretation. Eur. Phys. J. Plus 2020, 135, 374. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Znojil, M. Supersymmetry and Exceptional Points. Symmetry 2020, 12, 892. https://doi.org/10.3390/sym12060892
Znojil M. Supersymmetry and Exceptional Points. Symmetry. 2020; 12(6):892. https://doi.org/10.3390/sym12060892
Chicago/Turabian StyleZnojil, Miloslav. 2020. "Supersymmetry and Exceptional Points" Symmetry 12, no. 6: 892. https://doi.org/10.3390/sym12060892
APA StyleZnojil, M. (2020). Supersymmetry and Exceptional Points. Symmetry, 12(6), 892. https://doi.org/10.3390/sym12060892