Some Cosmological Solutions of a New Nonlocal Gravity Model
Abstract
:1. Introduction
2. New Nonlocal Gravity Model
2.1. Equations of Motion
2.2. Ghost-Free Condition
3. Cosmological Solutions
3.1. Cosmological Solution
3.2. Cosmological Solution
3.3. Other Vacuum Solutions: = const
4. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wald, R.M. General Relativity; University of Chicago Press: Chicago, IL, USA, 1984. [Google Scholar]
- Sotiriou, T.P.; Faraoni, V. f(R) theories of gravity. Rev. Mod. Phys. 2010, 82, 451–497. [Google Scholar] [CrossRef] [Green Version]
- Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified gravity and cosmology. Phys. Rep. 2012, 513, 1–189. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rep. 2011, 505, 59–144. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution. Phys. Rep. 2017, 692, 1–104. [Google Scholar] [CrossRef] [Green Version]
- Novello, M.; Bergliaffa, S.E.P. Bouncing cosmologies. Phys. Rep. 2008, 463, 127–213. [Google Scholar] [CrossRef]
- Deser, S.; Woodard, R. Nonlocal cosmology. Phys. Rev. Lett. 2007, 99, 111–301. [Google Scholar] [CrossRef] [Green Version]
- Woodard, R.P. Nonlocal models of cosmic acceleration. Found. Phys. 2014, 44, 213–233. [Google Scholar] [CrossRef] [Green Version]
- Belgacem, E.; Dirian, Y.; Foffa, S.; Maggiore, M. Nonlocal gravity. Conceptual aspects and cosmological predictions. J. Cosmol. Astropart. Phys. 2018, 2018, 2. [Google Scholar] [CrossRef] [Green Version]
- Biswas, T.; Mazumdar, A.; Siegel, W. Bouncing universes in string-inspired gravity. J. Cosmol. Astropart. Phys. 2006, 603, 9. [Google Scholar] [CrossRef]
- Biswas, T.; Koivisto, T.; Mazumdar, A. Towards a resolution of the cosmological singularity in non-local higher derivative theories of gravity. J. Cosmol. Astropart. Phys. 2010, 1011, 8. [Google Scholar] [CrossRef] [Green Version]
- Biswas, T.; Gerwick, E.; Koivisto, T.; Mazumdar, A. Towards singularity and ghost free theories of gravity. Phys. Rev. Lett. 2012, 108, 31–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biswas, T.; Koshelev, A.S.; Mazumdar, A.; Vernov, S.Y. Stable bounce and inflation in non-local higher derivative cosmology. J. Cosmol. Astropart. Phys. 2012, 8, 24. [Google Scholar] [CrossRef]
- Biswas, T.; Conroy, A.; Koshelev, A.S.; Mazumdar, A. Generalized gost-free quadratic curvature gravity. Class. Quantum Grav. 2014, 31, 159501. [Google Scholar] [CrossRef] [Green Version]
- Biswas, T.; Koshelev, A.S.; Mazumdar, A. Consistent higher derivative gravitational theories with stable de Sitter and Anti-de Sitter backgrounds. Phys. Rev. 2017, 95, 043533. [Google Scholar] [CrossRef] [Green Version]
- Dragovich, B. On Nonlocal modified gravity and cosmology. Springer Proc. Math. Stat. 2014, 111, 251–262. [Google Scholar]
- Koshelev, A.S.; Vernov, S.Y. On bouncing solutions in non-local gravity. Phys. Part. Nuclei 2012, 43, 666–668. [Google Scholar] [CrossRef] [Green Version]
- Koshelev, A.S. Stable analytic bounce in non-local Einstein-Gauss-Bonnet cosmology. Class. Quantum Grav. 2013, 30, 155001. [Google Scholar] [CrossRef] [Green Version]
- Koshelev, A.S.; Kumar, K.S.; Starobinsky, A.A. R2 inflation to probe non-perturbative quantum gravity. JHEP 2018, 1803, 71. [Google Scholar] [CrossRef] [Green Version]
- Koshelev, A.S.; Modesto, L.; Rachwal, L.; Starobinsky, A.A. Occurrence of exact R2 inflation in non-local UV-complete gravity. JHEP 2016, 11, 1–41. [Google Scholar]
- Buoninfante, L.; Koshelev, A.S.; Lambiase, G.; Mazumdar, A. Classical properties of non-local, ghost- and singularity-free gravity. JCAP 2018, 2018, 34. [Google Scholar] [CrossRef] [Green Version]
- Koshelev, A.S.; Marto, J.; Mazumdar, A. Towards conformally flat, non-Kasner vacuum solution in infinite derivative gravity. JCAP 2019, 2019, 20. [Google Scholar] [CrossRef] [Green Version]
- Elizalde, E.; Pozdeeva, E.O.; Vernov, S.Y. Stability of de Sitter solutions in non-local cosmological models. arXiv 2013, arXiv:1202.0178. [Google Scholar]
- Conroy, A.; Koivisto, T.; Mazumdar, A.; Teimouri, A. Generalised quadratic curvature, non-local infrared modifications of gravity and Newtonian potentials. Clas. Quantum Grav. 2015, 32, 015024. [Google Scholar] [CrossRef] [Green Version]
- Dragovich, B.; Khrennikov, A.Y.; Kozyrev, S.V.; Volovich, I.V.; Zelenov, E.I. p-Adic mathematical physics: The first 30 years. p-Adic Numbers Ultrametric Anal. Appl. 2017, 9, 87–121. [Google Scholar] [CrossRef]
- Modesto, L. Super-renormalizable quantum gravity. Phys. Rev. D 2012, 86, 044005. [Google Scholar] [CrossRef] [Green Version]
- Modesto, L.; Rachwal, L. Super-renormalizable and finite gravitational theories. Nucl. Phys. B 2014, 889, 228. [Google Scholar] [CrossRef] [Green Version]
- Stelle, K.S. Renormalization of higher derivative quantum gravity. Phys. Rev. D 1977, 16, 953. [Google Scholar] [CrossRef]
- Dimitrijevic, I.; Dragovich, B.; Grujic, J.; Rakic, Z. On modified gravity. Springer Proc. Math. Stat. 2013, 36, 251–259. [Google Scholar]
- Dimitrijevic, I.; Dragovich, B.; Grujic, J.; Rakic, Z. New cosmological solutions in nonlocal modified gravity. Rom. Journ. Phys. 2013, 58, 550–559. [Google Scholar]
- Dimitrijevic, I.; Dragovich, B.; Grujic, J.; Rakic, Z. Some power-law cosmological solutions in nonlocal modified gravity. Springer Proc. Math. Stat. 2014, 111, 241–250. [Google Scholar]
- Dimitrijevic, I.; Dragovich, B.; Grujic, J.; Koshelev, A.S.; Rakic, Z. Cosmology of non-local f(R) gravity. Filomat 2019, 33, 1163–1178. [Google Scholar] [CrossRef]
- Dimitrijevic, I.; Dragovich, B.; Stankovic, J.; Koshelev, A.S.; Rakic, Z. On nonlocal modified gravity and its cosmological solutions. Springer Proc. Math. Stat. 2016, 191, 35–51. [Google Scholar]
- Dimitrijevic, I.; Dragovich, B.; Grujic, J.; Rakic, Z. Some cosmological solutions of a nonlocal modified gravity. Filomat 2015, 29, 619–628. [Google Scholar] [CrossRef] [Green Version]
- Dimitrijevic, I. Cosmological solutions in modified gravity with monomial nonlocality. Appl. Math. Comput. 2016, 285, 195–203. [Google Scholar] [CrossRef] [Green Version]
- Dimitrijevic, I.; Dragovich, B.; Rakic, Z.; Stankovic, J. On nonlocal gravity with constant scalar curvature. Publ. De L’Institut Math. Nouv. Série 2018, 103, 53–59. [Google Scholar] [CrossRef]
- Dimitrijevic, I.; Dragovich, B.; Koshelev, A.S.; Rakic, Z.; Stankovic, J. Cosmological solutions of a nonlocal square root gravity. Phys. Lett. B 2019, 797, 134848. [Google Scholar] [CrossRef]
- Dimitrijevic, I.; Dragovich, B.; Rakic, Z.; Stankovic, J. Variations of infinite derivative modified gravity. Springer Proc. Math. Stat. 2018, 263, 91–111. [Google Scholar]
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M. Planck 2018 results. VI. Cosmological parameters, Planck collaboration. arXiv 2018, arXiv:1807.06209. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimitrijevic, I.; Dragovich, B.; Koshelev, A.S.; Rakic, Z.; Stankovic, J. Some Cosmological Solutions of a New Nonlocal Gravity Model. Symmetry 2020, 12, 917. https://doi.org/10.3390/sym12060917
Dimitrijevic I, Dragovich B, Koshelev AS, Rakic Z, Stankovic J. Some Cosmological Solutions of a New Nonlocal Gravity Model. Symmetry. 2020; 12(6):917. https://doi.org/10.3390/sym12060917
Chicago/Turabian StyleDimitrijevic, Ivan, Branko Dragovich, Alexey S. Koshelev, Zoran Rakic, and Jelena Stankovic. 2020. "Some Cosmological Solutions of a New Nonlocal Gravity Model" Symmetry 12, no. 6: 917. https://doi.org/10.3390/sym12060917
APA StyleDimitrijevic, I., Dragovich, B., Koshelev, A. S., Rakic, Z., & Stankovic, J. (2020). Some Cosmological Solutions of a New Nonlocal Gravity Model. Symmetry, 12(6), 917. https://doi.org/10.3390/sym12060917