A Cosserat Model of Elastic Solids Reinforced by a Family of Curved and Twisted Fibers
Abstract
:1. Introduction
2. Kirchhoff Rods
2.1. Kinematics
2.2. Strain-Energy Function
2.3. Equilibrium Theory
3. Cosserat Elasticity of Fiber-Reinforced Materials
3.1. Kinematical and Constitutive Variables in Cosserat Elasticity
3.2. Virtual Power and Equilibrium
3.3. Fiber-Matrix Interaction
4. Material Symmetry
4.1. Change of Reference Configuration
4.2. Material Symmetry Transformations
5. Examples
5.1. Matrix Energy
5.2. Fiber Symmetry
5.2.1. Transversely Hemitropic Fibers
5.2.2. Transversely Orthotropic Fibers
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Steigmann, D.J. Theory of elastic solids reinforced with fibers resistant to extension, flexure and twist. Int. J. Non-Linear Mech. 2012, 47, 734–742. [Google Scholar] [CrossRef] [Green Version]
- Steigmann, D.J. Effects of fiber bending and twisting resistance on the mechanics of fiber-reinforced elastomers. In CISM Course: Nonlinear Mechanics of Soft Fibrous Tissues; Dorfmann, L., Ogden, R.W., Eds.; Springer: Wien, Austria; New York, NY, USA, 2015; Volume 559, pp. 269–305. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Theory of Elasticity, 3rd ed.; Pergamon: Oxford, UK, 1986. [Google Scholar]
- Dill, E.H. Kirchhoff’s theory of rods. Arch. Hist. Exact Sci. 1992, 44, 1–23. [Google Scholar] [CrossRef]
- Antman, S.S. Nonlinear Problems of Elasticity; Springer: Berlin, Germany, 2005. [Google Scholar]
- Cosserat, E.; Cosserat, F. Théorie des Corps Déformables; Hermann: Paris, France, 1909. [Google Scholar]
- Toupin, R.A. Theories of elasticity with couple stress. Arch. Ration. Mech. Anal. 1964, 17, 85–112. [Google Scholar] [CrossRef]
- Truesdell, C.; Noll, W. The Non-Linear Field Theories of Mechanics. In Handbuch der Physik, Vol. III/3; Flügge, S., Ed.; Springer: Berlin, Germany, 1965. [Google Scholar]
- Reissner, E. Note on the equations of finite-strain force and moment stress elasticity. Stud. Appl. Math. 1975, 54, 1–8. [Google Scholar]
- Reissner, E. A further note on finite-strain force and moment stress elasticity. Z. Angew. Math. Phys. 1987, 38, 665–673. [Google Scholar] [CrossRef]
- Pietraszkiewicz, W.; Eremeyev, V.A. On natural strain measures of the nonlinear micropolar continuum. Int. J. Solids Struct. 2009, 46, 774–787. [Google Scholar] [CrossRef] [Green Version]
- Neff, P. Existence of minimizers for a finite-strain micro-morphic elastic solid. Proc. Roy. Soc. Edinb. A 2006, 136, 997–1012. [Google Scholar] [CrossRef] [Green Version]
- Akbarov, S.D.; Guz, A.N. Mechanics of Curved Composites; Kluwer: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Dorfmann, L.; Ogden, R.W. CISM Course: Nonlinear Mechanics of Soft Fibrous Tissues; Dorfmann, L., Ogden, R.W., Eds.; Springer: Wien, Austria; New York, NY, USA, 2015; Volume 559. [Google Scholar]
- Basu, S.; Waas, A.M.; Ambur, D.R. Compressive failure of fiber composites under multi-axial loading. J. Mech. Phys. Solids 2006, 54, 611–634. [Google Scholar] [CrossRef]
- Eremeyev, V.A.; Pietraszkiewicz, W. Material symmetry group of the non-linear polar-elastic continuum. Int. J. Solids Struct. 2012, 49, 1993–2005. [Google Scholar] [CrossRef] [Green Version]
- Noll, W. A mathematical theory of the mechanical behavior of continuous media. Arch. Ration. Mech. Anal. 1958, 2, 197–226. [Google Scholar] [CrossRef]
- Steigmann, D.J. The variational structure of a nonlinear theory for spatial lattices. Meccanica 1996, 31, 441–455. [Google Scholar] [CrossRef] [Green Version]
- Spencer, A.J.M.; Soldatos, K.P. Finite deformations of fibre-reinforced elastic solids with fibre bending stiffness. Int. J. Non-Linear Mech. 2007, 42, 355–368. [Google Scholar] [CrossRef] [Green Version]
- Healey, T.J. Material symmetry and chirality in nonlinearly elastic rods. Math. Mech. Solids 2002, 7, 405–420. [Google Scholar] [CrossRef]
- Luo, C.C.; O’Reilly, O.M. On the material symmetry of elastic rods. J. Elast. 2000, 60, 35–56. [Google Scholar] [CrossRef]
- Lauderdale, T.; O’Reilly, O.M. On the restrictions imposed by non-affine material symmetry groups for elastic rods: Application to helical substructures. Eur. J. Mech. A/Solids 2007, 26, 701–711. [Google Scholar] [CrossRef]
- Chadwick, P. Continuum Mechanics: Concise Theory and Problems; Dover: New York, NY, USA, 1976. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shirani, M.; Steigmann, D.J. A Cosserat Model of Elastic Solids Reinforced by a Family of Curved and Twisted Fibers. Symmetry 2020, 12, 1133. https://doi.org/10.3390/sym12071133
Shirani M, Steigmann DJ. A Cosserat Model of Elastic Solids Reinforced by a Family of Curved and Twisted Fibers. Symmetry. 2020; 12(7):1133. https://doi.org/10.3390/sym12071133
Chicago/Turabian StyleShirani, Milad, and David J. Steigmann. 2020. "A Cosserat Model of Elastic Solids Reinforced by a Family of Curved and Twisted Fibers" Symmetry 12, no. 7: 1133. https://doi.org/10.3390/sym12071133
APA StyleShirani, M., & Steigmann, D. J. (2020). A Cosserat Model of Elastic Solids Reinforced by a Family of Curved and Twisted Fibers. Symmetry, 12(7), 1133. https://doi.org/10.3390/sym12071133