Hesitant Fuzzy SWARA-Complex Proportional Assessment Approach for Sustainable Supplier Selection (HF-SWARA-COPRAS)
Abstract
:1. Introduction
- ▪
- A novel HF-SWARA-COPRAS method is introduced.
- ▪
- The criteria weights are evaluated by the SWARA method.
- ▪
- To illustrate the feasibility and usefulness of the HF-SWARA-COPRAS method, an empirical case study of SSS problem is discussed under HFSs environment.
- ▪
- Sensitivity analysis and comparative study are discussed to confirm the stability and validity of the developed methodology.
2. Literature Review
2.1. Hesitant Fuzzy Sets
2.2. Step-Wise Weight Assessment Ratio Analysis (SWARA)
2.3. Complex Proportional Assessment (COPRAS) Approach
2.4. Sustainable Supplier Selection (SSS)
3. Proposed Methodology
3.1. Prerequisites
3.2. Hesitant Fuzzy SWARA-COPRAS Method
4. An Empirical Study: Sustainable Supplier Selection (SSS)
4.1. Sensitivity Analysis
4.2. Comparison with Existing Methods
- The HFS can reflect the DE’s hesitancy more objectively than other classical extensions of FS. Therefore, the use of the developed HF-SWARA-COPRAS approach gives a more flexible way to express the uncertainty in the selection of SS.
- The SWARA method is employed to evaluate the criteria weights in the evaluation of the SSS process, which makes the introduced HF-SWARA-COPRAS method more reliable, efficient and sensible tool.
- The proposed HF-SWARA-COPRAS can process the information in a more useful and suitable way and from different perspectives, such as benefit-type and cost-type criteria.
4.3. Discussion and Implications
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, Y.; Jin, L.; Zhu, F. A multi-criteria group decision making model for green supplier selection under the ordered weighted hesitant fuzzy environment. Symmetry 2019, 11, 17. [Google Scholar] [CrossRef] [Green Version]
- Stevic, Ž.; Pamucar, D.; Puška, A.; Chatterjee, P. Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement of alternatives and ranking according to Compromise solution (MARCOS). Comput. Ind. Eng. 2020, 140, 106231. [Google Scholar] [CrossRef]
- Quan, M.; Wang, Z.; Liu, H.; Shi, H. A hybrid MCDM approach for large group green supplier selection with uncertain linguistic information. IEEE Access 2018, 6, 50372–50383. [Google Scholar] [CrossRef]
- Meksavang, P.; Shi, H.; Lin, S.M.; Liu, H.C. An extended picture fuzzy VIKOR approach for sustainable supplier management and its application in the beef industry. Symmetry 2019, 11, 468. [Google Scholar] [CrossRef] [Green Version]
- Carter, C.R.; Easton, L.P. Sustainable supply chain management: Evolution and future directions. Int. J. Phys. Distrib. Logist. Manag. 2011, 41, 46–62. [Google Scholar] [CrossRef]
- Lo, H.W.; Liou, J.J.H.; Wang, H.S.; Tsai, Y.S. An integrated model for solving problems in green supplier selection and order allocation. J. Clean. Prod. 2018, 190, 339–352. [Google Scholar] [CrossRef]
- Liu, K.; Liu, Y.W.; Qin, J.D. An integrated ANP-VIKOR methodology for sustainable supplier selection with interval type-2 fuzzy sets. Granul. Comput. 2018, 3, 193–208. [Google Scholar] [CrossRef]
- Wang, J.; Gao, H.; Wei, G.; Wei, Y. Methods for multiple-attribute group decision making with q-rung interval-valued orthopair fuzzy information and their applications to the selection of green suppliers. Symmetry 2019, 11, 56. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.Q.; Liu, H.C.; Liu, L.; Huang, J. Green supplier evaluation and selection using cloud model theory and the QUALIFLEX method. Sustainability 2017, 9, 688. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Quan, M.Y.; Liu, H.C.; Duan, C.Y. A novel integrated approach for green supplier selection with interval-valued intuitionistic uncertain linguistic information: A case study in the agri-food industry. Sustainability 2018, 10, 733. [Google Scholar] [CrossRef] [Green Version]
- Govindan, K.; Sivakumar, R. Green supplier selection and order allocation in a low-carbon paper industry: Integrated multi-criteria heterogeneous decision-making and multi-objective linear programming approaches. Ann. Oper. Res. 2016, 238, 243–276. [Google Scholar] [CrossRef]
- Duan, C.Y.; Liu, H.C.; Zhang, L.J.; Shi, H. An extended alternative queuing method with linguistic Z-numbers and its application for green supplier selection and order allocation. Int. J. Fuzzy Syst. 2019, 21, 2510–2523. [Google Scholar] [CrossRef]
- Mou, N.Y.; Chang, J.P.; Chen, Z.S. Sustainable supplier selection based on Pd-HFLTS and group decision-making theory. Comput. Integr. Manuf. Syst. 2018, 24, 1261–1278. [Google Scholar]
- Torra, V. Hesitant fuzzy sets. Int. J. Intell. Syst. 2010, 25, 529–539. [Google Scholar] [CrossRef]
- Torra, V.; Narukawa, Y. On hesitant fuzzy sets and decision. In Proceedings of the 18th IEEE International Conference on Fuzzy Systems, Jeju Island, Korea, 20–24 August 2009. [Google Scholar]
- Liu, J.; Liu, P.; Liu, S.F.; Zhou, X.Z.; Zhang, T. A study of decision process in MCDM problems with large number of criteria. Int. Trans. Oper. Res. 2015, 22, 237–264. [Google Scholar] [CrossRef]
- Diakoulaki, D.; Mavrotas, G.; Papayannakis, L. Determining objective weights in multiple criteria problems: The CRITIC method. Comput. Oper. Res. 1995, 22, 763–770. [Google Scholar] [CrossRef]
- Goldstein, W.M. Judgments of relative importance in decision making: Global vs local interpretations of subjective weight. Organ. Behav. Hum. Decis. Process. 1990, 47, 313–336. [Google Scholar] [CrossRef]
- Kersuliene, V.; Zavadskas, E.K.; Turskis, Z. Selection of rational dispute resolution method by applying new step-wise weight assessment ratio analysis (SWARA). J. Bus. Econ. Manag. 2010, 11, 243–258. [Google Scholar] [CrossRef]
- Wen, Z.; Liao, H.; Ren, R.; Bai, C.; Zavadskas, E.K.; Antucheviciene, J.; Al-Barakati, A. Cold chain logistics management of medicine with an integrated multi-criteria decision-making method. Int. J. Environ. Res. Public Health 2019, 16, 4843. [Google Scholar] [CrossRef] [Green Version]
- Zavadskas, E.K.; Kaklauskas, A.; Sarka, V. The new method of multicriteria complex proportional assessment of projects. Technol. Econ. Dev. Econ. 1994, 1, 131–139. [Google Scholar]
- Rani, P.; Mishra, A.R.; Mardani, A. An extended Pythagorean fuzzy complex proportional assessment approach with new entropy and score function: Application in pharmacological therapy selection for type 2 diabetes. Appl. Soft Comput. 2020. [Google Scholar] [CrossRef]
- Mishra, A.R.; Rani, P.; Pardasani, K.R. Multiple-criteria decision-making for service quality selection based on Shapley COPRAS method under hesitant fuzzy sets. Granul. Comput. 2019, 4, 435–449. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning Part I. Inf. Sci. 1975, 8, 199–249. [Google Scholar] [CrossRef]
- Yager, R.R. On the theory of bags. Int. J. Gen. Syst. 1986, 13, 23–37. [Google Scholar] [CrossRef]
- Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Xia, M.M.; Xu, Z.S. Hesitant fuzzy information aggregation in decision making. Int. J. Approx. Reason. 2011, 52, 395–407. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.S.; Xia, M. Hesitant fuzzy entropy and cross-entropy and their use in multiattribute decision-making. Int. J. Intell. Syst. 2012, 27, 799–822. [Google Scholar] [CrossRef]
- Liao, H.; Xu, Z.S.; Zeng, X.J. Novel correlation coefficients between hesitant fuzzy sets and their application in decision making. Knowl.-Based Syst. 2015, 82, 115–127. [Google Scholar] [CrossRef]
- He, Y.; He, Z.; Wang, G.; Chen, H. Hesitant Fuzzy Power Bonferroni Means and Their Application to Multiple Attribute Decision Making. IEEE Trans. Fuzzy Syst. 2015, 23, 1655–1668. [Google Scholar] [CrossRef]
- Qin, J.; Liu, X.; Pedrycz, W. Frank aggregation operators and their application to hesitant fuzzy multiple attribute decision making. Appl. Soft Comput. 2016, 41, 428–452. [Google Scholar] [CrossRef]
- Liao, H.; Xu, Z.S. Satisfaction degree based interactive decision making under hesitant fuzzy environment with incomplete weights. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 2014, 22, 553–572. [Google Scholar] [CrossRef]
- Peng, J.J.; Wang, J.Q.; Wu, X.H. Novel multi-criteria decision-making approaches based on hesitant fuzzy sets and prospect theory. Int. J. Inf. Technol. Decis. Mak. 2016, 15, 1–23. [Google Scholar] [CrossRef]
- Zhao, H.; Xu, Z.S.; Wang, H.; Liu, S. Hesitant fuzzy multi-attribute decision-making based on the minimum deviation method. Soft Comput. 2017, 21, 3439–3459. [Google Scholar] [CrossRef]
- Faizi, S.; Rashid, T.; Salabun, W.; Zafar, S.; Watrobski, J. Decision making with uncertainty using hesitant fuzzy sets. Int. J. Fuzzy Syst. 2018, 20, 93–103. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.S.; Cheng, S. An overview on the applications of the hesitant fuzzy sets in group decision-making: Theory, support and methods. Front. Eng. Manag. 2019, 6, 163–182. [Google Scholar] [CrossRef]
- Mishra, A.R.; Rani, P.; Pardasani, K.R.; Mardani, A. A novel hesitant fuzzy WASPAS method for assessment of green supplier problem based on exponential information measures. J. Clean Prod. 2019. [Google Scholar] [CrossRef]
- Liao, H.C.; Xu, Z.S.; Xia, M.M. Multiplicative consistency of hesitant fuzzy preference relation and its application in group decision making. Int. J. Inf. Technol. Decis. Mak. 2014, 13, 47–76. [Google Scholar] [CrossRef]
- Krishankumar, R.; Ravichandran, K.S.; Murthy, K.K.; Saeid, A.B. A scientific decision-making framework for supplier outsourcing using hesitant fuzzy information. Soft Comput. 2018, 22, 7445–7461. [Google Scholar] [CrossRef]
- Wang, F. Aggregation Similarity Measure Based on Hesitant Fuzzy Closeness Degree and Its Application to Clustering Analysis. J. Syst. Sci. Inf. 2019, 7, 70–89. [Google Scholar] [CrossRef]
- Dehnavi, A.; Aghdam, I.N.; Pradhan, B.; Morshed Varzandeh, M.H. A new hybrid model using step-wise weight assessment ratio analysis (SWARA) technique and adaptive neuro-fuzzy inference system (ANFIS) for regional landslide hazard assessment in Iran. CATENA 2015, 135, 122–148. [Google Scholar] [CrossRef]
- Karabasevic, D.; Zavadskas, E.K.; Turskis, Z.; Stanujkic, D. The framework for the selection of personnel based on the SWARA and ARAS methods under uncertainties. Informatica 2016, 27, 49–65. [Google Scholar] [CrossRef] [Green Version]
- Nakhaei, J.; Bitarafan, M.; LaleArefi, S.; Kaplinski, O. Model for rapid assessment of vulnerability of office buildings to blast using SWARA and SMART methods (a case study of swiss re tower). J. Civ. Eng. Manag. 2016, 22, 831–843. [Google Scholar] [CrossRef] [Green Version]
- Shukla, S.; Mishra, P.; Jain, R.; Yadav, H. An integrated decision making approach for ERP system selection using SWARA and PROMETHEE method. Int. J. Intell. Enterp. 2016, 3, 120–147. [Google Scholar] [CrossRef]
- Isık, A.T.; Adalı, E.A. A new integrated decision making approach based on SWARA and OCRA methods for the hotel selection problem. Int. J. Adv. Oper. Manag. 2016, 8, 140–151. [Google Scholar]
- Mavi, R.K.; Goh, M.; Zarbakhshnia, N. Sustainable third-party reverse logistic provider selection with fuzzy SWARA and fuzzy MOORA in plastic industry. Int. J. Adv. Manuf. Technol. 2017, 91, 2401–2418. [Google Scholar] [CrossRef]
- Panahi, S.; Khakzad, A.; Afzal, P. Application of stepwise weight assessment ratio analysis (SWARA) forcopperprospectivity mapping in the Anarak region, central Iran. Arab. J. Geosci. 2017, 10, 484. [Google Scholar] [CrossRef]
- Stanujkic, D.; Zavadskas, E.K.; Karabasevic, D.; Turskis, Z.; Kersuliene, V. New group decision-making ARCAS approach based on the integration of the SWARA and the ARAS methods adapted for negotiations. J. Bus. Econ. Manag. 2017, 18, 599–618. [Google Scholar] [CrossRef] [Green Version]
- Karabaševic, D.; Stanujkic, D.; Urosevic, S.; Popovic, G.; Maksimovic, M. An approach to criteria weights determination by integrating the Delphi and the adapted SWARA methods. Manag. J. Theory Pract. Manag. 2017, 22, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Urosevic, S.; Karabasevic, D.; Stanujkic, D.; Maksimovic, M. An approach to personnel selection in the tourism industry based on the SWARA and the WASPAS methods. Econ. Comput. Econ. Cybern. Stud. Res. 2017, 51, 75–88. [Google Scholar]
- Jamali, G.; Asl, E.K.; Hashemkhani Zolfani, S.; Saparauskas, J. Analysing larg supply chain management competitive strategies in Iranian cement industries. E+M Ekon. Manag. 2017, 20, 70–83. [Google Scholar] [CrossRef]
- Juodagalviene, B.; Turskis, Z.; Šaparauskas, J.; Endriukaityte, A. Integrated multi-criteria evaluation of house’s plan shape based on the EDAS and SWARA methods. Eng. Struct. Technol. 2017, 9, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Tayyar, N.; Durmu, M. Comparison of Max100, SWARA and pairwise weight elicitation methods. Int. J. Eng. Res. Appl. 2017, 7, 67–78. [Google Scholar] [CrossRef]
- Ghorabaee, M.K.; Amiri, M.; Zavadskas, E.K.; Antucheviciene, J. A new hybrid fuzzy MCDM approach for evaluation of construction equipment with sustainability considerations. Arch. Civ. Mech. Eng. 2018, 18, 32–49. [Google Scholar] [CrossRef]
- Dahooie, J.H.; Abadi, E.B.J.; Vanaki, A.S.; Firoozfar, H.R. Competency-based IT personnel selection using a hybrid SWARA and ARAS-G methodology. Hum. Factors Ergon. Manuf. Serv. Ind. 2018, 28, 5–16. [Google Scholar] [CrossRef]
- Rani, P.; Mishra, A.R.; Mardani, A.; Cavallaro, F.; Streimikiene, D.; Khan, S.A.R. Pythagorean fuzzy SWARA–VIKOR framework for performance evaluation of solar panel selection. Sustainability 2020, 12, 4278. [Google Scholar] [CrossRef]
- Rani, P.; Mishra, A.R. Single-valued neutrosophic SWARA-VIKOR framework for performance assessment of eco-industrial thermal power plants. ICSES Trans. Neural Fuzzy Comput. 2020, 3, 1–9. [Google Scholar]
- Mishra, A.R.; Rani, P.; Pandey, K.; Mardani, A.; Streimikis, J.; Streimikiene, D.; Alrasheedi, M. Novel multi-criteria intuitionistic fuzzy SWARA–COPRAS approach for sustainability evaluation of the bioenergy production process. Sustainability 2020, 12, 4155. [Google Scholar] [CrossRef]
- Yazdani, M.; Alidoosti, A.; Zavadskas, E.K. Risk Analysis of Critical Infrastructures Using Fuzzy COPRAS. Econ. Res. 2011, 24, 27–40. [Google Scholar] [CrossRef]
- Fouladgar, M.M.; Yazdani-Chamzini, A.; Lashgari, A.; Zavadskas, E.K.; Turskis, Z. Maintenance strategy selection using AHP and COPRAS under fuzzy environment. Int. J. Strateg. Prop. Manag. 2012, 16, 85–104. [Google Scholar] [CrossRef]
- Antucheviciene, J.; Zavadskas, E.K.; Zakarevicius, A. Ranking redevelopment decisions of derelict buildings and analysis of ranking results. Econ. Comput. Econ. Cybern. Stud. Res. 2012, 46, 37–62. [Google Scholar]
- Das, M.C.; Sarkar, B.; Ray, S. A framework to measure relative performance of Indian technical institutions using integrated fuzzy AHP and COPRAS methodology. Socio-Econ. Plan. Sci. 2012, 46, 230–241. [Google Scholar] [CrossRef]
- Tavana, M.; Momeni, E.; Rezaeiniya, N.; Mirhedayatian, S.M.; Rezaeiniya, H. A novel hybrid social media platform selection model using fuzzy ANP and COPRAS-G. Exp. Syst. Appl. 2013, 40, 5694–5702. [Google Scholar] [CrossRef]
- Aghdaie, M.H.; Zolfani, S.H.; Zavadskas, E.K. Market segment evaluation and selection based on application of fuzzy AHP and COPRAS-G methods. J. Bus. Econ. Manag. 2013, 14, 213–233. [Google Scholar] [CrossRef] [Green Version]
- Hajiagha, S.H.R.; Hashemi, S.S.; Zavadskas, E.K. A complex proportional assessment method for group decision making in an interval-valued intuitionistic fuzzy environment. Technol. Econ. Dev. Econ. 2013, 19, 22–37. [Google Scholar] [CrossRef]
- Ghorabaee, M.K.; Amiri, M.; Salehi Sadaghiani, J.; HassaniGoodarzi, G. Multiple criteria group decision-making for supplier selection based on COPRAS method with interval type-2 fuzzy sets. Int. J. Adv. Manuf. Technol. 2014, 75, 1115–1130. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Antucheviciene, J.; Hajiagha, S.H.R.; Hashemi, S.S. The interval-valued intuitionistic fuzzy MULTIMOORA method for group decision making in engineering. Math. Probl. Eng. 2015, 2015, 1–13. [Google Scholar] [CrossRef]
- Akhavan, P.; Barak, S.; Maghsoudlou, H.; Antucheviciene, J. FQSPM-SWOT for strategic alliance planning and partner selection; case study in a holding car manufacturer company. Technol. Econ. Dev. Econ. 2015, 21, 165–185. [Google Scholar] [CrossRef] [Green Version]
- Bekar, E.T.; Cakmakci, M.; Kahraman, C. Fuzzy COPRAS method for performance measurement in total productive maintenance: A comparative analysis. J. Bus. Econ. Manag. 2016, 17, 663–684. [Google Scholar] [CrossRef] [Green Version]
- Garg, R. Optimal selection of E-learning websites using multi-attribute decision-making approaches. J. Multi-Crit. Decis. Anal. 2017, 24, 187–196. [Google Scholar] [CrossRef]
- Wang, Z.-L.; You, J.-X.; Liu, H.-C.; Wu, S.-M. Failure Mode and Effect Analysis using Soft Set Theory and COPRAS Method. Int. J. Comput. Intell. Syst. 2017, 10, 1002–1015. [Google Scholar] [CrossRef] [Green Version]
- Mahdiraji, H.A.; Arzaghi, S.; Stauskis, G.; Zavadskas, E.K. A hybrid fuzzy BWM-COPRAS method for analyzing key factors of sustainable architecture. Sustainability 2018, 10, 1626. [Google Scholar] [CrossRef] [Green Version]
- Kurtulmuşoğlu, F.B.; Can, G.F.; Pakdil, F.; Tolon, M. Does gender matter? Considering gender of service in the airline industry. J. Air Transp. Manag. 2018, 70, 73–82. [Google Scholar] [CrossRef]
- Barak, S.; Dahooei, J.H. A novel hybrid fuzzy DEA-Fuzzy MADM method for airlines safety evaluation. J. Air Transp. Manag. 2018, 73, 134–149. [Google Scholar] [CrossRef] [Green Version]
- Krishankumar, R.; Ravichandran KSSneha SVShyam, S.; Kar, S.; Garg, H. Multi-attribute group decision-making using double hierarchy hesitant fuzzy linguistic preference information. Neural Comput. Appl. 2020. [Google Scholar] [CrossRef]
- Garg, H.; Nancy. Algorithms for possibility linguistic single-valued neutrosophic decision-making based on COPRAS and aggregation operators with new information measures. Measurement 2019, 138, 278–290. [Google Scholar] [CrossRef] [Green Version]
- Hajek, P.; Froelich, W. Integrating TOPSIS with interval-valued intuitionistic fuzzy cognitive maps for effective group decision making. Inf. Sci. 2019, 485, 394–412. [Google Scholar] [CrossRef]
- Sivagami, R.; Ravichandran, K.S.; Krishankumar, R.; Sangeetha, V.; Kar, S.; Gao, X.-Z.; Pamucar, D. A Scientific Decision Framework for Cloud Vendor Prioritization under Probabilistic Linguistic Term Set Context with Unknown/Partial Weight Information. Symmetry 2019, 11, 682. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.R.; Rani, P.; Mardani, A.; Pardasani, K.R.; Govindan, K.; Alrasheedi, M. Healthcare evaluation in hazardous waste recycling using novel interval-valued intuitionistic fuzzy information based on complex proportional assessment method. Comput. Ind. Eng. 2020, 139, 106140. [Google Scholar] [CrossRef]
- Kumari, R.; Mishra, A.R. Multi-criteria COPRAS method based on parametric measures for intuitionistic fuzzy sets: Application of green supplier selection. Iran. J. Sci Technol. Trans. Electr. Eng. 2020. [Google Scholar] [CrossRef]
- Kannan, D.; Lopes de Sousa Jabbour, A.B.; Jabbour, C.J.C. Selecting green suppliers based on GSCM practices: Using fuzzy TOPSIS applied to a Brazilian electronics company. Eur. J. Oper. Res. 2014, 233, 432–447. [Google Scholar] [CrossRef]
- You, X.Y.; You, J.X.; Liu, H.C.; Zhen, L. Group multi-criteria supplier selection using an extended VIKOR method with interval 2-tuple linguistic information. Exp. Syst. Appl. 2015, 42, 1906–1916. [Google Scholar] [CrossRef]
- Xu, X.G.; Shi, H.; Zhang, L.J.; Liu, H.C. Green supplier evaluation and selection with an extended MABAC method under the heterogeneous information environment. Sustainability 2019, 11, 6616. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.C.; Quan, M.Y.; Li, Z.; Wang, Z.L. A new integrated MCDM model for sustainable supplier selection under interval-valued intuitionistic uncertain linguistic environment. Inf. Sci. 2019, 486, 254–270. [Google Scholar] [CrossRef]
- Liu, P.; Gao, H.; Ma, J. Novel green supplier selection method by combining quality function deployment with partitioned Bonferroni mean operator in interval type-2 fuzzy environment. Inf. Sci. 2019, 490, 292–316. [Google Scholar] [CrossRef]
- Lu, Z.; Sun, X.; Wang, Y.; Xu, C. Green supplier selection in straw biomass industry based on cloud model and possibility degree. J. Clean. Prod. 2019, 209, 995–1005. [Google Scholar] [CrossRef]
- Memari, A.; Dargi, A.; Jokar, M.R.A.; Ahmad, R.; Rahim, A.R.A. Sustainable supplier selection: A multi-criteria intuitionistic fuzzy TOPSIS method. J. Manuf. Syst. 2019, 50, 9–24. [Google Scholar] [CrossRef]
- Peng, J.J.; Tian, C.; Zhang, W.Y.; Zhang, S.; Wang, J.Q. An integrated multi-criteria decision-making framework for sustainable supplier selection under picture fuzzy environment. Technol. Econ. Dev. Econ. 2020. [Google Scholar] [CrossRef] [Green Version]
- You, S.Y.; Zhang, L.J.; Xu, X.G.; Liu, H.C. A new integrated multi-criteria decision making and multi-objective programming model for sustainable supplier selection and order allocation. Symmetry 2020, 12, 302. [Google Scholar] [CrossRef] [Green Version]
- Hassini, E.; Surti, C.; Searcy, C. A literature review and a case study of sustainable supply chains with a focus on metrics. Int. Prod. Econ. 2012, 140, 69–82. [Google Scholar] [CrossRef]
- Osiro, L.; Lima-Junior, F.R.; Carpinetti, L.C.R. A group decision model based on quality function deployment and hesitant fuzzy for selecting supply chain sustainability metrics. J. Clean. Prod. 2018, 183, 964–978. [Google Scholar] [CrossRef]
- Sarkis, J.; Dhavale, D.G. Supplier selection for sustainable operations: A triple-bottom-line approach using a Bayesian framework. Int. J. Prod. Econ. 2015, 166, 177–191. [Google Scholar] [CrossRef]
- Awasthi, A.; Govindan, K.; Gold, S. Multi-tier sustainable global supplier selection using a fuzzy AHP-VIKOR based approach. Int. J. Prod. Econ. 2018, 195, 106–117. [Google Scholar] [CrossRef]
- Zimmer, K.; Froehling, M.; Schultmann, F. Sustainable supplier management—A review of models supporting sustainable supplier selection, monitoring and development. Int. J. Prod. Res. 2016, 54, 1412–1442. [Google Scholar] [CrossRef]
- Amindoust, A.; Ahmed, S.; Saghafinia, A.; Bahreininejad, A. Sustainable supplier selection: A ranking model based on fuzzy inference system. Appl. Soft Comput. 2012, 12, 1668–1677. [Google Scholar] [CrossRef]
Dimension | Criteria | Meaning | Type |
---|---|---|---|
Economic [7,13,91,92] | Quality (F1) | The overall quality of products. | Benefit |
Cost (F2) | Price and the share of transaction costs per unit product. | Cost | |
Production Capacity (F3) | Single-shift production per day. | Benefit | |
Environmental [7,13,88,93] | Eco-design (F4) | Refers the design of products for reduced consumption of material/energy, reuse and recycling. | Benefit |
Sustainable Materials (F5) | The level of sustainable materials utilized in manufacturing and packaging per product. | Benefit | |
Pollution (F6) | Refers the average amount of air pollutants, wastes and hazardous materials released per day. | Cost | |
Industry Reputation (F7) | The degree of social recognition of corporate behavior. | Benefit | |
Social [13,88,92,94] | Health and safety (F8) | Including Occupational Safety and Health (OHSAS) 18001, conditions and incidents. | Benefit |
LVs | HFNs | DEs Risk Preference | ||
---|---|---|---|---|
Pessimist | Moderate | Optimist | ||
Very High (VH) | [0.8, 0.9] | 0.80 | 0.85 | 0.90 |
High (H) | [0.70, 0.8] | 0.70 | 0.75 | 0.80 |
Medium (M) | [0.55, 0.70] | 0.55 | 0.625 | 0.70 |
Low (L) | [0.40, 0.55] | 0.40 | 0.475 | 0.55 |
Very Low (VL) | [0.25, 0.40] | 0.25 | 0.325 | 0.40 |
LVs | HFNs | DEs Risk Preference | ||
---|---|---|---|---|
Pessimist | Moderate | Optimist | ||
Extremely Preferable (EP) | [0.9, 1.0] | 0.9 | 0.95 | 1.00 |
Strong Preferable (SP) | [0.75, 0.9] | 0.75 | 0.825 | 0.9 |
Preferable (P) | [0.6, 0.75] | 0.6 | 0.675 | 0.75 |
Moderate (M) | [0.45, 0.6] | 0.45 | 0.525 | 0.6 |
Undesirable (U) | [0.35, 0.45] | 0.35 | 0.4 | 0.45 |
Strong Undesirable (SU) | [0.2, 0.35] | 0.2 | 0.275 | 0.35 |
Extremely Undesirable (EU) | [0.0, 0.15] | 0.00 | 0.075 | 0.15 |
G1 | G2 | G3 | G4 | G5 | |
---|---|---|---|---|---|
F1 | {0.2, 0.3, 0.7} | {0.3, 0.4, 0.8} | {0.4, 0.6, 0.7} | {0.5, 0.7, 0.9} | {0.1, 0.4, 0.5} |
F2 | {0.5, 0.6,0.7} | {0.5, 0.7,0.8} | {0.4, 0.5, 0.7} | {0.5,0.8, 0.9} | {0.5, 0.7, 0.9} |
F3 | {0.4,0.5, 0.7} | {0.7, 0.8,0.9} | {0.5, 0.6,0.9} | {0.2,0.6, 0.7} | {0.3, 0.5, 0.8} |
F4 | {0.4, 0.6, 0.8} | {0.4, 0.8, 0.9} | {0.1, 0.2, 0.4} | {0.3, 0.6, 0.8} | {0.2, 0.5, 0.8} |
F5 | {0.3, 0.4, 0.6} | {0.4, 0.7, 0.9} | {0.3, 0.6, 0.7} | {0.4, 0.7, 0.8} | {0.2, 0.5, 0.6} |
F6 | {0.3, 0.5, 0.7} | {0.1,0.5, 0.8} | {0.4, 0.6, 0.7} | {0.2, 0.5, 0.9} | {0.2, 0.7, 0.9} |
F7 | {0.3, 0.5, 0.8} | {0.6, 0.7, 0.8} | {0.3, 0.5, 0.6} | {0.2, 0.4, 0.8} | {0.2, 0.3, 0.7} |
F8 | {0.1, 0.3,0.4} | {0.2, 0.5,0.8} | {0.6, 0.7,0.9} | {0.3, 0.4, 0.9} | {0.3, 0.6, 0.8} |
G1 | G2 | G3 | G4 | G5 | |
---|---|---|---|---|---|
F1 | 0.435 | 0.548 | 0.577 | 0.744 | 0.346 |
F2 | 0.603 | 0.682 | 0.544 | 0.777 | 0.744 |
F3 | 0.544 | 0.813 | 0.717 | 0.533 | 0.575 |
F4 | 0.627 | 0.762 | 0.237 | 0.607 | 0.555 |
F5 | 0.440 | 0.727 | 0.554 | 0.662 | 0.449 |
F6 | 0.519 | 0.537 | 0.577 | 0.641 | 0.699 |
F7 | 0.575 | 0.706 | 0.474 | 0.527 | 0.435 |
F8 | 0.271 | 0.555 | 0.762 | 0.635 | 0.607 |
Criteria | LVs is given by DEs | HFNs Given by DEs | |||||
---|---|---|---|---|---|---|---|
B1 | B2 | B3 | B1 | B2 | B3 | ||
F1 | SU | P | P | 0.2 | 0.675 | 0.75 | 0.589 |
F2 | M | P | P | 0.45 | 0.675 | 0.75 | 0.639 |
F3 | U | M | M | 0.35 | 0.525 | 0.6 | 0.496 |
F4 | M | M | P | 0.45 | 0.525 | 0.75 | 0.588 |
F5 | M | M | M | 0.45 | 0.525 | 0.6 | 0.524 |
F6 | P | P | P | 0.6 | 0.675 | 0.75 | 0.676 |
F7 | U | P | EP | 0.35 | 0.675 | 0.9 | 0.712 |
F8 | SP | M | SP | 0.75 | 0.525 | 0.9 | 0.763 |
Criteria | Crisp Values | Comparative Significance of Criteria Value | Coefficient | Recalculated Weight | Criteria Weight |
---|---|---|---|---|---|
F8 | 0.763 | - | 1.000 | 1.000 | 0.1429 |
F7 | 0.712 | 0.051 | 1.051 | 0.951 | 0.1359 |
F6 | 0.676 | 0.036 | 1.036 | 0.918 | 0.1312 |
F2 | 0.639 | 0.037 | 1.037 | 0.885 | 0.1264 |
F1 | 0.589 | 0.050 | 1.050 | 0.843 | 0.1204 |
F4 | 0.588 | 0.001 | 1.001 | 0.842 | 0.1203 |
F5 | 0.524 | 0.064 | 1.064 | 0.791 | 0.1130 |
F3 | 0.496 | 0.028 | 1.028 | 0.769 | 0.1099 |
SSS Option | Ranking | ||||
---|---|---|---|---|---|
G1 | 0.394 | 0.192 | 0.333 | 80.73% | 4 |
G2 | 0.586 | 0.218 | 0.412 | 100.00% | 1 |
G3 | 0.483 | 0.191 | 0.378 | 91.58% | 2 |
G4 | 0.517 | 0.277 | 0.353 | 85.53% | 3 |
G5 | 0.406 | 0.281 | 0.296 | 71.76% | 5 |
G1 | G2 | G3 | G4 | G5 | |
---|---|---|---|---|---|
0.0 | 0.272 | 0.239 | 0.273 | 0.188 | 0.186 |
0.1 | 0.284 | 0.274 | 0.294 | 0.221 | 0.208 |
0.2 | 0.296 | 0.308 | 0.315 | 0.254 | 0.230 |
0.3 | 0.309 | 0.343 | 0.336 | 0.287 | 0.252 |
0.4 | 0.321 | 0.378 | 0.357 | 0.320 | 0.274 |
0.5 | 0.333 | 0.412 | 0.378 | 0.353 | 0.296 |
0.6 | 0.345 | 0.447 | 0.399 | 0.386 | 0.318 |
0.7 | 0.357 | 0.482 | 0.420 | 0.418 | 0.340 |
0.8 | 0.369 | 0.516 | 0.441 | 0.451 | 0.362 |
0.9 | 0.382 | 0.551 | 0.462 | 0.484 | 0.384 |
1.0 | 0.394 | 0.586 | 0.483 | 0.517 | 0.406 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rani, P.; Mishra, A.R.; Krishankumar, R.; Mardani, A.; Cavallaro, F.; Soundarapandian Ravichandran, K.; Balasubramanian, K. Hesitant Fuzzy SWARA-Complex Proportional Assessment Approach for Sustainable Supplier Selection (HF-SWARA-COPRAS). Symmetry 2020, 12, 1152. https://doi.org/10.3390/sym12071152
Rani P, Mishra AR, Krishankumar R, Mardani A, Cavallaro F, Soundarapandian Ravichandran K, Balasubramanian K. Hesitant Fuzzy SWARA-Complex Proportional Assessment Approach for Sustainable Supplier Selection (HF-SWARA-COPRAS). Symmetry. 2020; 12(7):1152. https://doi.org/10.3390/sym12071152
Chicago/Turabian StyleRani, Pratibha, Arunodaya Raj Mishra, Raghunathan Krishankumar, Abbas Mardani, Fausto Cavallaro, Kattur Soundarapandian Ravichandran, and Karthikeyan Balasubramanian. 2020. "Hesitant Fuzzy SWARA-Complex Proportional Assessment Approach for Sustainable Supplier Selection (HF-SWARA-COPRAS)" Symmetry 12, no. 7: 1152. https://doi.org/10.3390/sym12071152
APA StyleRani, P., Mishra, A. R., Krishankumar, R., Mardani, A., Cavallaro, F., Soundarapandian Ravichandran, K., & Balasubramanian, K. (2020). Hesitant Fuzzy SWARA-Complex Proportional Assessment Approach for Sustainable Supplier Selection (HF-SWARA-COPRAS). Symmetry, 12(7), 1152. https://doi.org/10.3390/sym12071152