Hamilton–Jacobi Equation for a Charged Test Particle in the Stäckel Space of Type (2.0)
Abstract
:1. Introduction
- (1)
- Non-null Stäckel spaces of type (3.0). The complete set includes three Killing vector fields. The coordinate hypersurface related to the non-ignored variable is non-null. (Ignored are the privileged variables (see the definition below) that occur linearly in the complete integral. Other variables are called non-ignored.)
- (2)
- Null Stäckel spaces of type (3.1). The complete set includes three Killing vector fields. The coordinate hypersurface related to the non-ignored variable is null one.
- (3)
- Non-null Stäckel spaces of type (2.0). The complete set includes two Killing vector fields. Coordinate hypersurfaces related to non-ignored variables are non-null.
- (4)
- Null Stäckel spaces of type (2.1). The complete set includes two Killing vector fields. The coordinate hypersurface belonging to one of the non-ignored variables is null.
- (5)
- Non-isotropic Stäckel spaces of type (1.0). The complete set includes one non-isotropic Killing vector field. Coordinate hypersurfaces related to non-ignored variables are non-null.
- (6)
- Null Stäckel spaces of type (1.1). The set includes one isotropic Killing vector field. The coordinate hypersurface belonging to one of the non-ignored variables is null.
- (7)
- Non-null Stäckel spaces of type (0.0). The complete set does not contain Killing vector fields. Coordinate hypersurfaces related to non-ignored variables are non-null.
2. Conditions for the Existence of a Complete Set of Motion Integrals
3. Solutions for the Case When Both Functions Are Free
4. The Linear Dependence of on a Free Function
4.1. Finding the Metric Tensor
- I
- We show that in this case all the solutions of Equation (23) for all classes from the expressions (26) except can be represented as:By marking: we bring the equation (23) to the form:
- (a)
- .Let us fix the variable to the point in the functional Equation (24). As result, we get the expression:From we get: Therefore, the matrix can be represented as (28). The statement is proved.
- (b)
- .The functional equation follows from (29):The elements of the matrix can be represented as:Thus, , The equality to zero of the coefficients before gives the system of equations: and the matrix are reduced to the form (27).
- (c)
- .The functional equation follows from (29):Since , we get: Therefore, the matrix can be represented as:
- (d)
- .The functional equation follows from (29):Since we get: and the matrix can be represented as:Thus, it has the form (27).
- (e)
- Now consider the case when . The function , and the functional equation follows from (29):From here: and the matrix takes the form:
- II
- In case when the matrices belong to the first three variants (), Equation (23) has no nonzero solutions and does not contain any free function. Consider the remaining options.
- (a)
- .From Equation (23) it follows:From here: , and we get the matrix in the form:
- (b)
- .From Equation (23) it follows:First, let and the matrix takes the form:By replacing the variables: , we bring the solution to the form:Now let . It is easy to show that in this case and has the form:Thus, both solutions are special cases of the solution (35).
4.2. Building an Electromagnetic Potential
- (a)
- Matrix .We substitute the matrix into the equation (24). After some transformation we get the equation:This implies:By the admissible gradient transformations of the potential, the values and can be set to zero. The solution has the form:This result was first obtained by Carter [38].
- (b)
- Matrix .
- (c)
- Matrix .Substitute it in Equation (24). Denote: . After the reduction, we get:The Equation (25) can be reduced to the form:Equation (42) has a unique solution: By the admissible gradient transformation of the potential we vanish . The solution has the form
5. Quadratic Dependence between Free Functions
6. Discussion
- I
- II
- III
- IV
- V
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Stäckel, P. Uber die intagration der Hamiltonschen differentialechung mittels separation der variablen. Math. Ann. 1897, 49, 145–147. [Google Scholar]
- Stäckel, P. Ueber Die Bewegung Eines Punktes In Einer N-Fachen Mannigfaltigkeit. Math. Ann. 1893, 42, 537–563. [Google Scholar]
- Eisenhart, L.P. Separable systems of stackel. Ann. Math. 1934, 35, 284–305. [Google Scholar]
- Levi-Civita, T. Sulla Integraziome Della Equazione Di Hamilton-Jacobi Per Separazione Di Variabili. Math. Ann. 1904, 59, 383–397. [Google Scholar]
- Jarov-Jrovoy, M.S. Integration of Hamilton-Jacobi equation by complete separation of variables method. J. Appl. Math. Mech. 1963, 27, 173–219. [Google Scholar]
- Shapovalov, V.N. Symmetry of motion equations of free particle in riemannian space. Sov. Phys. J. 1975, 18, 1650–1654. [Google Scholar] [CrossRef]
- Shapovalov, V.N. Symmetry and separation of variables in the Hamilton-Jacobi equation. Sov. Phys. J. 1978, 21, 1124–1132. [Google Scholar] [CrossRef]
- Shapovalov, V.N. Stackel’s spaces. Sib. Math. J. 1979, 20, 1117–1130. [Google Scholar] [CrossRef]
- Bagrov, V.G.; Obukhov, V.V. Complete separation of variables in the free Hamilton-Jacobi equation. Theor. Math. Phys. 1993, 97, 1275–1289. [Google Scholar] [CrossRef]
- Shapovalov, A.V.; Shirokov, I.V. Noncommutative Integration Method For Linear Partial Differential Equations. Functional Algebras And Dimensional Reduction. Theor. Math. Phys. 1996, 106, 1–10. [Google Scholar]
- Shapovalov, V.N.; Eckle, G.G. Separation of Variables in the Dirac Equation. Sov. Phys. J. 1973, 16, 818–823. [Google Scholar] [CrossRef]
- Shapovalov, V.N. Symmetry and separation of variables in a linear second-order differential equation. I, II. Sov. Phys. J. 1978, 21, 645–650; discussion 693–695. [Google Scholar]
- Bagrov, V.G.; Meshkov, A.G.; Shapovalov, V.N.; Shapovalov, A.V. Separation of variables in the Klein-Gordon equations I. Sov. Phys. J. 1973, 16, 1533–1538. [Google Scholar] [CrossRef]
- Bagrov, V.G.; Meshkov, A.G.; Shapovalov, V.N.; Shapovalov, A.V. Separation of variables in the Klein-Gordon equations II. Sov. Phys. J. 1973, 16, 1659–1665. [Google Scholar] [CrossRef]
- Bagrov, V.G.; Meshkov, A.G.; Shapovalov, V.N.; Shapovalov, A.V. Separation of variables in the Klein-Gordon equations III. Sov. Phys. J. 1974, 17, 812–815. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution. Phys. Rep. 2017, 692. [Google Scholar] [CrossRef] [Green Version]
- Bamba, K.; Capozziello, S.; Nojiri, S.; Odintsov, S.D. Dark energy cosmology: The equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 2012, 342, 155. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; De Laurentis, M.; Odintsov, D. Hamiltonian dynamics and Noether symmetries in extended gravity cosmology. Eur. Phys. J. C 2012, 72, 2068. [Google Scholar] [CrossRef]
- Benenti, S. Separability In Riemannian Manifolds, Symmetry, Integrability and geometry: Methods and applications. SIGMA 2016, 12, 13. [Google Scholar] [CrossRef]
- Miller, W. Symmetry and Separation of Variables; Cambridge University Press: Cambridge, UK, 1984; 318p. [Google Scholar]
- Frolov, V.P.; Krtouš, P.; Kubizňák, D. Separation of variables in maxwell equations in Plebanski-Demianski spacetime. Phys. Rev. D 2018, 97, 101701. [Google Scholar] [CrossRef] [Green Version]
- Chong, Z.W.; Gibbons, G.W.; Pope, C.N. Separability and Killing tensors in Kerr-Taub-Nut-De Sitter metrics in higher dimensions. Phys. Lett. B 2005, 609, 124–132. [Google Scholar] [CrossRef] [Green Version]
- Vasudevan, M.; Stevens, K.A.; Page, D.N. Separability Of The Hamilton-Jacobi And Klein-Gordon Equations In Kerr-De Sitter Metrics. Class. Quant. Grav. 2005, 22, 339–352. [Google Scholar] [CrossRef] [Green Version]
- Miller, W., Jr.; Post, S.; Winternitz, P. Classical Aad Qqantum superintegrability with applications. J. Phys. A Math. Theor. 2013, 46, 423001. [Google Scholar] [CrossRef] [Green Version]
- Osetrin, E.K.; Osetrin, K.E.; Filippov, A.E. Stationary homogeneous models of Stackel spaces of type (3.1). Russ. Phys. J. 2020, 63, 51–56. [Google Scholar]
- Maharaj, S.D.; Goswami, R.; Chervon, S.V.; Nikolaev, A.V. Exact solutions for scalar field cosmology in f(R) gravity. Mod. Phys. Lett. A 2017, 32, 1750164. [Google Scholar] [CrossRef] [Green Version]
- Fomin, I.V.; Chervon, S.V. Exact and approximate solutions in the Friedmann cosmology. Russ. Phys. J. 2017, 60, 427–440. [Google Scholar] [CrossRef]
- Osetrin, E.K.; Osetrin, K.E.; Filippov, A.E. Stationary homogeneous models of Stackel spaces of type (2.1). Russ. Phys. J. 2020, 63, 57–65. [Google Scholar]
- Osetrin, K.E.; Filippov, A.E.; Osetrin, E.R. The spacetime models with dust matter that admit separation of variables in Hamilton-Jacobi equations of a test particle. Mod. Phys. Lett. A 2016, 31, 1650027. [Google Scholar] [CrossRef] [Green Version]
- Breev, A.I.; Shapovalov, A.V. The Dirac equation in an external electromagnetic field: Symmetry algebra and exact integration. J. Phys. Conf. Ser. 2016, 21, 012015. [Google Scholar] [CrossRef]
- Ivata, G. Empty spaces of Stackel. Nat. Sci. Rep. Ochonomisu Univ. 1969, 9, 79–93. [Google Scholar]
- Obukhov, V.V. Classes of exact solutions of Einstein equations. Sov. Phys. J. 1977, 2, 73–77. [Google Scholar] [CrossRef]
- Obukhov, V.V. Some classes of exact solutions of Einstein equations. Sov. Phys. J. 1977, 5, 148–150. [Google Scholar]
- Obukhov, V.V. Classes of exact solutions of Einstein equations II. Sov. Phys. J. 1978, 5, 56–59. [Google Scholar] [CrossRef]
- Boyer, C.P.; Kalnins, E.G.; Miller, W. Separation of variables in Einstein spaces. I. Two ignorable and one null coordinate. J. Phys. Math. Gen. 1981, 14, 1675–1684. [Google Scholar] [CrossRef]
- Bagrov, V.G.; Obukhov, V.V.; Shapovalov, A.V. Special Stackel electrovac spacetimes. Pramana J. Phys. 1986, 26, 93–108. [Google Scholar] [CrossRef]
- Bagrov, V.G.; Obukhov, V.V. Classes of exact solutions of the Einstein-Maxwell equations. Ann. Phys. 1983, 40, 181–188. [Google Scholar] [CrossRef]
- Carter, B. New family of Einstein spaces. Phys. Lett A 1968, 25, 399–400. [Google Scholar] [CrossRef]
- Benenti, S.; Chanu, C.; Rastelli, G. Variables Separation for Natural Hamiltonians with Scalar and Vector Potentials on Riemannian Manifolds. J. Math. Phys. 2001, 42, 2065–2091. [Google Scholar] [CrossRef]
- Stephani, H.; Kramer, D.; Mac Callum, M.; Hoenselaers, C.; Herlt, E. Exact Solutions of Einstein’s Field Equations, 2nd ed.; Cambridge University Press: Cambridge, UK, 2003; 732p. [Google Scholar]
- Balakin, A.B. The Extended Einstein-Maxwell-Aether-Axion Model: Exact solutions for axionically controlled pp-Wave aether modes. Mod. Phys. Lett. A 2018, 33, 1850050. [Google Scholar] [CrossRef] [Green Version]
- Obukhov, V.V. Integration of Hamilton-Jacobi and Maxwell equations in diagonal metrics of Stackel spaces. Sov. Phys. J. 2020, 7, 33–35. [Google Scholar]
- Obukhov, V.V. Hamilton-Jacobi equation for a charged test particle in the Stackel space of type (2.1). 2020; in press. [Google Scholar]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obukhov, V. Hamilton–Jacobi Equation for a Charged Test Particle in the Stäckel Space of Type (2.0). Symmetry 2020, 12, 1289. https://doi.org/10.3390/sym12081289
Obukhov V. Hamilton–Jacobi Equation for a Charged Test Particle in the Stäckel Space of Type (2.0). Symmetry. 2020; 12(8):1289. https://doi.org/10.3390/sym12081289
Chicago/Turabian StyleObukhov, Valeriy. 2020. "Hamilton–Jacobi Equation for a Charged Test Particle in the Stäckel Space of Type (2.0)" Symmetry 12, no. 8: 1289. https://doi.org/10.3390/sym12081289
APA StyleObukhov, V. (2020). Hamilton–Jacobi Equation for a Charged Test Particle in the Stäckel Space of Type (2.0). Symmetry, 12(8), 1289. https://doi.org/10.3390/sym12081289