Dynamical Symmetries of the H Atom, One of the Most Important Tools of Modern Physics: SO(4) to SO(4,2), Background, Theory, and Use in Calculating Radiative Shifts
Abstract
:1. Introduction
1.1. Objective of This Paper
1.2. Outline of This Paper
1.3. Brief History of Symmetry in Quantum Mechanics and Its Role in Understanding the Schrodinger Hydrogen Atom
The study of the hydrogen atom has been at the heart of the development of modern physics...theoretical calculations reach precision up to the 12th decimal place...high resolution laser spectroscopy experiments...reach to the 15th decimal place for the 1S–2S transition...The Rydberg constant is known to six parts in [2,3]. Today, the precision is so great that measurement of the energy levels in the H atom has been used to determine the radius of the proton.
The construction of unitary representations of non-compact groups that have the property that the irreducible representations of their maximal subgroup appear at most with multiplicity one is of certain interest for physical applications. The method of construction used here in the Coulomb potential case can be extended to various other cases. The geometrical emphasis may help to visualize things and provide a global form of the transformations.
1.4. The Dirac Hydrogen Atom
2. Background
2.1. The Relationship between Symmetry and Conserved Quantities
2.2. Non-Invariance Groups and Spectrum Generating Group
2.3. Basic Idea of Eigenstates of
2.4. Degeneracy Groups for Schrodinger, Dirac and Klein-Gordon Equations
3. Classical Theory of the H Atom
3.1. Orbit in Configuration Space
3.2. The Period
3.3. Group Structure SO(4)
3.4. The Classical Hydrogen Atom in Momentum Space
3.5. Four-Dimensional Stereographic Projection in Momentum Space
3.6. Orbit in U space
3.7. Classical Time Dependence of Orbital Motion
Remark on Harmonic Oscillator
4. The Hydrogenlike Atom in Quantum Mechanics; Eigenstates of the Inverse of the Coupling Constant
4.1. The Degeneracy Group SO(4)
4.2. Derivation of the Energy Levels
4.3. Relativistic and Semi-Relativistic Spinless Particles in the Coulomb Potential and Klein–Gordon Equation
4.4. Eigenstates of the Inverse Coupling Constant
4.5. Another Set of Eigenstates of
4.6. Transformation of and to the New Basis States
4.7. The Representation
Action of a and L on
5. Wave Functions for the Hydrogenlike Atom
5.1. Transformation Properties of the Wave Functions under the Symmetry Operations
5.2. Differential Equation for the Four Dimensional Spherical Harmonics
5.3. Energy Eigenfunctions in Momentum Space
5.4. Explicit Form for the Spherical Harmonics
5.5. Wave Functions in the Classical Limit
5.5.1. Rydberg Atoms
5.5.2. Wave Functions in the Semi-Classical Limit
5.6. Quantized Semiclassical Orbits
5.7. Four-Dimensional Vector Model of the Atom
6. The Spectrum Generating Group SO(4,1) for the Hydrogenlike Atom
6.1. Motivation for Introducing the Spectrum Generating Group Group SO(4,1)
6.2. Casimir Operators
6.3. Relationship of the Dynamical Group SO(4,1) to the Conformal Group in Momentum Space
7. The Group SO(4,2)
7.1. Motivation for Introducing SO(4,2)
7.2. Casimir Operators
7.3. Some Group Theoretical Results
7.4. Subgroups of SO(4,2)
7.5. Time Dependence of SO(4,2) Generators
7.6. Expressing the Schrodinger Equation in Terms of the Generators of SO(4,2)
8. SO(4,2) Calculation of the Radiative Shift for the Schrodinger Hydrogen Atom
8.1. Generating Function for the Shifts
8.2. The Shift between Degenerate Levels
9. Conclusions and Future Research
Funding
Acknowledgments
Conflicts of Interest
References and Notes
- Brown, L. Bound on Screening Corrections in Beta Decay. Phys. Rev. 1964, 135, B314. [Google Scholar] [CrossRef]
- Beyer, A. The Rydberg constant and proton size from atomic hydrogen. Science 2017, 358, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Mohr, P.D.B.N.; Taylor, B.N. CODATA recommended values of the fundamental physical constants: 2014. Rev. Mod. Phys. 2016, 88, 035009. [Google Scholar] [CrossRef] [Green Version]
- Rigden, J. Hydrogen, The Essential Element; Harvard University Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Lamb, W.; Retherford, R. Fine Structure of the Hydrogen Atom by a Microwave Method. Phys. Rev. 1947, 72, 241. [Google Scholar] [CrossRef]
- Bethe, H. The Electromagnetic Shift of Energy Levels. Phys. Rev. 1947, 72, 339. [Google Scholar] [CrossRef]
- Maclay, J. History and Some Aspects of the Lamb Shift. Physics 2020, 2, 8. [Google Scholar] [CrossRef] [Green Version]
- Noether, E. Invariante Variationsprobleme. In Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen; Akademie der Wissenschaften zu Göttingen: Göttingen, Germany, 1918; pp. 235–257. [Google Scholar]
- Hamermesh, M. Group Theory; Adddison-Wesley Publishing Co.: Reading, MA, USA, 1962. [Google Scholar]
- Weyl, H. The Theory of Groups and Quantum Mechanics, 2nd ed.; Dover Reprint; Dover Publications: New York, NY, USA, 1928. [Google Scholar]
- Wigner, E. Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra; Academic Press: New York, NY, USA, 1959. [Google Scholar]
- Bargmann, V. Zur Theorie des Wasserstffatoms. Z. Phys. 1936, 99, 576. [Google Scholar] [CrossRef]
- Laplace, P. A Treatise of Celestial Mechanics; Forgotten Books: Dublin, Ireland, 1827. [Google Scholar]
- Pauli, W. Uber das Wasserstoffspektrum vom Standpunkt der neuen Quantummechanik. Z. Phys. 1926, 36, 336–363. [Google Scholar] [CrossRef]
- McIntosh, H. On Accidental Degeneracy in Classical and Quantum Mechanics. Am. J. Phys. 1959, 27, 620–625. [Google Scholar] [CrossRef]
- Hulthen, E. Über die quantenmechanische Herleitung der Balmerterme. Z. Phys. 1933, 86, 21–23. [Google Scholar] [CrossRef]
- We employ natural Gaussian units so ℏ = 1, c = 1, and α = (e2/ℏc) ≈ 1/137. The notation for indices and vectors is μ,ν,.. = 0,1,2,3; i,j,. = 1,2,3; pμpμ = −, p = (p1, p2, p3), gμν = (−1,1,1,1)
- Fock, V. Zur Theorie des Wasserstoffatoms. Z. Phys. 1935, 98, 145–154. [Google Scholar] [CrossRef]
- Dirac, P. Quantum Mechanics, 1st ed.; Oxford University Press: Oxford, UK, 1930. [Google Scholar]
- Gell-Mann, M. Symmetries of Baryons and Mesons. Phys. Rev. 1962, 125, 1067. [Google Scholar] [CrossRef] [Green Version]
- Schwinger, J. Coulomb’s Green’s Function. J. Math. Phys. 1964, 5, 1606–1608. [Google Scholar] [CrossRef]
- Ne’eman, Y. Algebraic Theory of Particle Physics; Benjamin: New York, NY, USA, 1967. [Google Scholar]
- Ne’eman, Y. Derivation of strong interactions from a gauge invariance. Nucl. Phys. 1961, 26, 222–229. [Google Scholar] [CrossRef]
- Gell-Mann, M. A schematic model of baryons and mesons. Phys. Lett. 1964, 8, 214–215. [Google Scholar] [CrossRef]
- Gell-Mann, M.; Ne’eman, Y. The Eightfold Way; Benjamin: New York, NY, USA, 1964. [Google Scholar]
- Dothan, Y.; Gell-Man, M.; Ne’eman, Y. Series of Hadron Energy Levels as Representations of Non-Compact Groups. Phys. Letters 1965, 17, 148. [Google Scholar] [CrossRef]
- Nambu, Y. Infinite-Component Wave Equations with Hydrogenlike Mass Spectra. Phys. Rev. 1967, 160, 1171. [Google Scholar] [CrossRef]
- Dyson, F. Symmetry Groups in Nuclear and Particle Physics; Benjamin: New York, NY, USA, 1966. [Google Scholar]
- Thomas, L. On the Unitary Representations of the Group of de Sitter Space. Ann. Math. 1941, 42, 113–126. [Google Scholar] [CrossRef]
- Harish-Chandra, Representations of Semisimple Lie Groups II. Trans. Am. Math. Soc. 1954, 76, 26. [CrossRef]
- Barut, A.; Budini, P.; Fronsdal, C. Two examples of covariant theories with internal symmetries involving spin. Proc. Roy. Soc. 1966, A291, 106–112. [Google Scholar]
- Malkin, I.; Man’ko, V. Symmetry of the Hydrogen Atom. Sov. Phys. Jetp Lett. 1966, 2, 146. [Google Scholar]
- Barut, A.; Kleinert, K. Transition Probabilities of the Hydrogen Atom from Noncompact Dynamical Groups. Phy. Rev. 1967, 156, 1541. [Google Scholar] [CrossRef]
- Barut, A.; Kleinert, H. Transition Form Factors in the H Atom. Phys. Rev. 1967, 160, 1149. [Google Scholar] [CrossRef]
- Bander, M.; Itzykson, C. Group Theory and the Hydrogen Atom (I). Rev. Mod. Phys. 1966, 38, 330. [Google Scholar] [CrossRef] [Green Version]
- Bander, M.; Itzykson, C. Group Theory and the Hydrogen Atom (II). Rev. Mod. Phys. 1966, 38, 346. [Google Scholar] [CrossRef] [Green Version]
- Fronsdal, C. Infinite Multiplets and Local Fields. Phys. Rev. 1967, 156, 1653. [Google Scholar] [CrossRef]
- Fronsdal, C. Infinite Multiplets and the Hydrogen Atom. Phys. Rev. 1967, 156, 1665. [Google Scholar] [CrossRef]
- Barut, A.; Fronsdal, C. On Non-Compact Groups. II Representations of the 2+1 Lorentz Group. Proc. R. Soc. 1965, A287, 532–548. [Google Scholar]
- Fronsdal, C. Relativistic Lagrangian Field Theory for Composite Systems. Phys. Rev. 1968, 171, 1811. [Google Scholar] [CrossRef]
- Pratt, R.; Jordan, T. Coulomb Group Theory for and Spin. Phys. Rev. 1969, 188, 2534. [Google Scholar]
- Fronsdal, C. Relativistic and Realistic Classical Mechanics of Two Interacting Point Particles. Phys. Rev. D 1971, 4, 1689. [Google Scholar] [CrossRef]
- Kyriakopoulos, R. Dynamical Groups and the Bethe-Salpeter Equation. Phys. Rev. 1968, 174, 1846. [Google Scholar] [CrossRef]
- Lieber, M. O(4) Symmetry of the Hydrogen Atom and the Lamb Shift. Phys. Rev. 1968, 174, 2037. [Google Scholar] [CrossRef]
- Huff, R. Simplified Calculation of Lamb Shift Using Algebraic Techniques. Phys. Rev. 1969, 186, 1367. [Google Scholar] [CrossRef]
- Musto, R. Generators of SO(4,1) for the Quantum Mechanical Hydrogen Atom. Phys. Rev. 1966, 148, 1274. [Google Scholar] [CrossRef]
- Barut, A.; Bornzin, G. SO(4,2)-Formulation of the Symmetry Breaking in Relativistic Kepler Problems with of without Magnetic Charge. J. Math. Phys. 1971, 12, 841–846. [Google Scholar] [CrossRef] [Green Version]
- Barut, A.; Kleinert, H. Current Operators and Majorana Equation for the Hydrogen Atom from Dynamical Groups. Phys. Rev. 1967, 157, 1180. [Google Scholar] [CrossRef]
- Mack, G.; Todorov, I. Irreducibility of the Ladder representations when restricted to the Poincare Subgroup. J. Math Phys. 1969, 10, 2078–2085. [Google Scholar] [CrossRef]
- Decoster, A. Realization of the Symmetry Groups of the Nonrelativistic Hydrogen Atom. Nuovo Cimento 1970, 68A, 105–117. [Google Scholar] [CrossRef]
- Englefield, M. Group Theory and the Coulomb Problem; Wiley-Interscience: New York, NY, USA, 1972. [Google Scholar]
- Barut, A. Dynamical Groups; University of Canterbury Press: Christchurch, New Zealand, 1972. [Google Scholar]
- Bednar, M. Algebraic Treatment of Quantum-Mechanical Models with Modified Coulomb Potentials. Ann. Phys. 1973, 75, 305–331. [Google Scholar] [CrossRef]
- Wulfman, C.; Takahata, Y. Noninvariance Groups in Molecular Quantum Mechanics. J. Chem. Phys. 1967, 47, 488–498. [Google Scholar] [CrossRef]
- Wybourne, B. Symmetry Principles in Atomic Spectroscopy. J. Phys. 1970, 31, C4-33. [Google Scholar] [CrossRef]
- Mariwalla, K. Dynamical Symmetries in Mechanics. Phys. Rep. 1975, 20, 287–362. [Google Scholar] [CrossRef]
- Akyildiz, Y. On the dynamical symmetries of the Kepler problem. J. Math. Phys. 1980, 21, 665–670. [Google Scholar] [CrossRef]
- Fronsdal, C.; Huff, R. Two-Body Problem in Quantum Field Theory. Phys. Rev. D 1971, 3, 933. [Google Scholar] [CrossRef]
- Loebl, E. (Ed.) Group Theory and Its Applications; Academic Press: New York, NY, USA, 1971. [Google Scholar]
- Barut, A.; Rasmussen, W. The hydrogen atom as a relativistic elementary particle I. The wave equation and mass formulae. J. Phys. 1973, B6, 1695. [Google Scholar] [CrossRef]
- Barut, A.; Rasmussen, W. The hydrogen atom as a relativistic elementary particle II. Relativistic scattering problems and photo-effect. J. Phys. 1973, B6, 1713. [Google Scholar] [CrossRef]
- Barut, A.; Bornzin, G. Unification of the external conformal symmetry group and the internal conformal dynamical group. J. Math. Phys. 1974, 15, 1000–1006. [Google Scholar] [CrossRef]
- Barut, A.; Schneider, C.; Wilson, R. Quantum theory of infinite component fields. J. Math. Phys. 1979, 20, 2244–2256. [Google Scholar] [CrossRef]
- Shibuya, T.; Wulfman, C. The Kepler Problem in Two-Dimensional Momentum Space. Am. J. Phys. 1965, 33, 570–574. [Google Scholar] [CrossRef]
- Dahl, J. Physical Interpretation of the Runge-Lenz Vector. Phys. Let. 1968, 27A, 62–63. [Google Scholar] [CrossRef]
- Collas, P. Algebraic Solution of the Kepler Problem Using the Runge-Lenz Vector. Am. J. Phys. 1970, 38, 253–255. [Google Scholar] [CrossRef]
- Rodgers, H. Symmetry transformations of the classical Kepler problem. J. Math. Phys. 1973, 14, 1125–1129. [Google Scholar] [CrossRef]
- Majumdar, S.; Basu, D. O(3,1) symmetry of the hydrogen atom. J. Phys. Math. Nuc. Gen. 1974, 7, 787. [Google Scholar] [CrossRef]
- Stickforth, J. The classical Kepler problem in momentum space. Am. J. Phys. 1978, 46, 74–75. [Google Scholar] [CrossRef]
- Ligon, T.; Schaaf, M. On the Global Symmetry of the Classical Kepler Problem. Rep. Math. Phys. 1976, 9, 281–300. [Google Scholar] [CrossRef]
- Lakshmanan, M.; Hasegawa, H. On the canonical equivalence of the Kepler problem in coordinate and momentum space. J. Phys. Math. Gen. 1984, 17, L889. [Google Scholar] [CrossRef]
- O’Connell, R.; Jagannathan, K. Illustrating dynamical symmetries in classical mechanics: The Laplace-Runge-Lenz vector revisited. Am. J. Phys. 2003, 71, 243–246. [Google Scholar] [CrossRef]
- Valent, G. The hydrogen atom in electric and magnetic fields: Pauli’s 1926 article. Am. J. Phys. 2003, 71, 171–175. [Google Scholar] [CrossRef] [Green Version]
- Morehead, J. Visualizing the extra symmetry of the Kepler problem. Am. J. Phys. 2005, 73, 234–239. [Google Scholar] [CrossRef]
- Huntington, L.; Nooijen, M. An SO(4) invariant Hamiltonian and the two-body bound state. I: Coulomb interaction between two spinless particles. Int. J. Quant. Chem. 2009, 109, 2885–2896. [Google Scholar] [CrossRef]
- Barut, A.; Bohm, A.; Neeman, Y. Dynamical Groups and Spectrum Generating Algebras; World Scientific: Singapore, 1986. [Google Scholar]
- Greiner, W.; Muller, B. Quantum Mechanics, Symmetries; Springer: Berlin, Germany, 1989. [Google Scholar]
- Gilmore, R. Lie Groups, Lie Algegras and Some of Their Applications; Dover Books on Mathmatics; Dover: Mineola, NY, USA, 2005. [Google Scholar]
- Kibler, M. On the use of the group SO(4,2) in atomic and molecular physics. Mol. Phys. 2004, 102, 1221–1229. [Google Scholar] [CrossRef] [Green Version]
- Hammond, I.; Chu, S. Irregular wavefunction behavior in dimagnetic Rydberg atoms:a dynamical SO(4,2) group study. Chem. Phys. Let. 1991, 182, 63. [Google Scholar] [CrossRef]
- Lev, F. Symmetries in Foundation of Quantum Theory and Mathematics. Symmetry 2020, 12, 409. [Google Scholar] [CrossRef] [Green Version]
- Wulfman, C. Dynamical Symmetry; World Scientific Publishing: Singapore, 2011. [Google Scholar]
- Johnson, M.; Lippmann, B.A. Relativistic Kepler problem. Phys. Rev. 1950, 78, 329. [Google Scholar]
- Biedenharn, L. Remarks on the relativistic Kepler problem. Phys. Rev. 1962, 126, 845–851. [Google Scholar] [CrossRef]
- Lanik, J. The Reformulations of the Klein-Gordon and Dirac Equations for the Hydrogen Atom to Algebraic Forms. Czech. J. Phys. 1969, B19, 1540–1548. [Google Scholar] [CrossRef]
- Stahlhofen, A. Algebraic solutions of relativistic Coulomb problems. Helv. Phys. Acta 1997, 70, 1141. [Google Scholar]
- Chen, J.; Deng, D.; Hu, M. SO(4) symmetry in the relativistic hydrogen atom. Phys. Rev. A 2008, 77, 034102. [Google Scholar] [CrossRef] [Green Version]
- Khachidze, T.; Khelashvili, A. The hidden symmetry of the Coulomb problem in relativistic quantum mechanics: From Pauli to Dirac. Am. J. Phys. 2006, 74, 628–632. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Fu, B.; Chen, J. Dynamical symmetry of Dirac hydrogen atom with spin symmetry and its connection to Ginocchio’s oscillator. Phys. Rev. A 2008, 78, 040101(R). [Google Scholar] [CrossRef] [Green Version]
- Heine, V. Group theory in Quantum Mechanics; Dover Publications: New York NY, USA, 1993. [Google Scholar]
- Noether, E.; Mort, T. Invariant Variation Problems. Transp. Theory Stat. Phys. 1971, 1, 186–207. [Google Scholar] [CrossRef] [Green Version]
- Neuenschwander, D.E. Emmy Noether’s Wonderful Theorem; Johns Hopkins University Press: Baltimore, MD, USA, 2010. [Google Scholar]
- Hanca, J.; Tulejab, S.; Hancova, M. Symmetries and conservation laws: Consequences of Noether’s theorem. Am. J. Phys. 2004, 72, 428–435. [Google Scholar] [CrossRef] [Green Version]
- Byers, N.E. Noether’s Discovery of the Deep Connection Between Symmetries and Conservation Laws. arXiv 1998, arXiv:physics/9807044. [Google Scholar]
- The daughter of a mathematician, she wanted to be a mathematician, but since women were not allowed to take classes at the University of Erlingen, she audited courses. She did so well in the exams, that she received a degree and was allowed to enroll in the university and received a PhD in 1907. She remained at the university, unpaid, in an unofficial status, for 8 years. Then she went to the University at Gottengen, where she worked for 8 years with no pay or status before being appointed as Lecturer with a modest salary. She was invited in 1915 by Felix Klein and David Hilbert, two of the most famous mathematicians in the world at the time, to work with them and address issues in Einstein’s theory of General Relativity about energy conservation. She discovered Nother’s First Theorem (and a second theorem also). She remained there until 1933 when she, as a Jew, lost her job. At Einstein’s suggestion, she went to Bryn Mawr College in Pennsylvania. She died from ovarian cysts two years later.
- A rotation in 4 dimension can be represented by an antisymmetric 4 × 4 matrix which has 3 + 2 + 1 = 6 independent non-diagonal elements corresponding to 6 generators. Similarly a rotation in 5 dimensions has 10 independent elements or 10 generators.
- Dothan, Y. Finite-Dimensional Spectrum-Generating Algebras. Phys. Rev. 1970, D2, 2944. [Google Scholar] [CrossRef]
- Mukanda, N.; Sudarshan, E. Characteristic Noninvariance Groups of Dynamical Systems. Phys. Rev. Lett. 1965, 15, 1041. [Google Scholar] [CrossRef]
- Kyriakopoulos, E. Algebraic Equations for Bethe-Salpeter and Coulomb Green’s Functions. J. Math. Phys. 1972, 13, 1729–1735. [Google Scholar] [CrossRef]
- Lipkin, H. Lie Groups for Pedestrians; Dover Publications: New York, NY, USA, 2001. [Google Scholar]
- Were it not for this displacement of the force center, the observation that a rotated circle projects onto a plane as an ellipse would manifest the four-dimensional symmetry of the hydrogenlike atom directly in configuration space. The elliptical orbits could be viewed as projections of a rotated hypercircle onto a three-dimensional hyperplane. These considerations can be applied with some modification to the three-dimensional harmonic oscillator for which the force center and the center of the ellipse coincide.
- This equation and any other equation written in this specific coordinate system can be generalized to an arbitrary coordinate system by noting that the Cartesian unit vectors may be written in a manner that is independent of the coordinate system:
- Brown, L.; University of Washington, Seattle, WA, USA. Unpublished lecture notes. 1972.
- We define the angle between a three-dimensional hyper-plane and a line as π/2 minus the angle between the line and the normal to the hyperplane.
- It is desirable to first show that A (and of course L) generate rotations of the hypersphere or . However, as we prefer to do the necessary calculations in terms of commutators rather than Poisson brackets, we defer these considerations to Section 4. There we show that the generator Li rotates about the i–4 plane; the generator A1 rotates about the 2–3 plane, etc., thereby changing the orbit with respect to the 4-axis and changing the eccentricity.
- Bois, G. Tables of Indefinite Integrals; Dover Pub1ications: New York, NY, USA, 1961; p. 123. [Google Scholar]
- Using Equation (44) and [102], Equation (73) may be written as cos−1(U · A/A) = p · r/arc + ωclt. This agrees with the time dependent function ϕ = p · r/arc − ωclt Equation (70) defined in [97].
- Brown, L. Forces giving no orbit precession. Am. J. Phys. 1978, 46, 930–931. [Google Scholar] [CrossRef]
- Bacry, H. Lectures in Theoretical Physics; Brittin, W.E., Barut, A.O., Guenin, M., Eds.; Gordon and Breach: New York, NY, USA, 1967. [Google Scholar]
- Barut, A. Dynamics of a Broken SUN Symmetry for the Oscillator. Phys. Rev. 1965, 139, B1433. [Google Scholar] [CrossRef]
- Boiteux, M. The Three-Dimensional Hydrogen Atom as a Restricted Four-Dimensional Harmonic Oscillator. Physica 1972, 65, 381–395. [Google Scholar] [CrossRef]
- Hughes, J. The harmonic oscillator:values of the SU(3) invariants. J. Phys. A Math. Gen. 1973, 6, 453. [Google Scholar] [CrossRef]
- Chen, A. Hydrogen atom as a four-dimensional oscillator. Phys. Rev. A 1980, 22, 333. [Google Scholar] [CrossRef]
- Chen, A. Homomorphism between SO(4,2) and SU(2,2). Phys. Rev. A 1981, 23, 1653. [Google Scholar] [CrossRef]
- Kibler, M.; Negadi, T. Connection between the hydrogen atom and the harmonic oscillator: The zero-energy case. Phys. Rev. A 1984, 29, 2891. [Google Scholar] [CrossRef]
- Chen, A.; Kibler, M. Connection between the hydrogen atom and the four-dimensional oscillator. Phys. Rev. A 1985, 31, 3960. [Google Scholar] [CrossRef]
- Gerry, C. Coherent states and the Kepler-Coulomb problem. Phys. Rev. A 1986, 33, 6. [Google Scholar] [CrossRef]
- Chen, A. Coulomb–Kepler problem and the harmonic oscillator. Am. J. Phys. 1987, 55, 250–252. [Google Scholar] [CrossRef]
- Van der Meer, J. The Kepler system as a reduced 4D oscillator. J. Geom. Phys. 2015, 92, 181–193. [Google Scholar] [CrossRef]
- Bacry, H. The de Sitter Group L4,1 and the Bound States of the Hydrogen Atom. Nuovo Cimento 1966, 41, 222–234. [Google Scholar] [CrossRef] [Green Version]
- Biedenharn, L. Wigner Coefficients for the R4 Group and Some Applications. J. Math. Phys. 1961, 2, 433–441. [Google Scholar] [CrossRef]
- Shiff, L. Quantum Mechanics; McGraw Hill: New York, NY, USA, 1955. [Google Scholar]
- Biedenharn, L.; Swamy, N. Remarks on the Relativistic Kepler Problem. II. Approximate Dirac-Coulomb Hamiltonian Possessing Two Vector Invariants. Phys. Rev. 1964, 133, B1353. [Google Scholar] [CrossRef]
- Morse, P.; Feshbach, H. Methods of Theoretical Physics, Vol. 1; McGraw-Hill: New York, NY, USA, 1953. [Google Scholar]
- The primes indicates eigenvalues of operators, and unprimed quantities indicate abstract operators. The quantity x′ means the four-vector (t′,)
- Morse, P.; Feshbach, H. Methods of Theoretical Physics, Vol. 2; McGraw-Hill: New York, NY, USA, 1953. [Google Scholar]
- Erdeli, A. (Ed.) Higher Transcendental Functions, Bateman Manuscript Project; McGraw-Hill Book Co.: New York, NY, USA, 1953. [Google Scholar]
- Makowski, A.; Pepłowski, P. Zero-energy wave packets that follow classical orbits. Phys. Rev. A 2012, 86, 042117. [Google Scholar] [CrossRef]
- Bellomo, P.; Stroud, C., Jr. Classical evolution of quantum elliptical orbits. Phys. Rev. A 1999, 59, 2139. [Google Scholar] [CrossRef] [Green Version]
- Berry, M.; Mount, K.E. Semiclassical approximations in wave mechanics. Rep. Prog. Phys. 1972, 35, 315. [Google Scholar] [CrossRef] [Green Version]
- Eberly, J.; Stroud, C. Chapters 14 (Rydberg Atoms) and Chapter 73 (Coherent Transients). In Springer Handbook of Atomic, Molecular, and Optical Physics; Drake, G., Ed.; Springer Science and Business Media: New York, NY, USA, 2006. [Google Scholar]
- Lakshmanan, M.; Ganesan, K. Rydberg atoms and molecules-Testing grounds for quantum manifestations of chaos. Curr. Sci. 1995, 68, 38–44. [Google Scholar]
- Kay, K. Exact Wave Functions for the Coulomb Problem from Classical Orbits. Phys. Rev. 1999, 25, 5190. [Google Scholar] [CrossRef]
- Lena, C.; Deland, D.; Gay, J. Wave functions of Atomic Elliptic States. Europhys. Lett. 1991, 15, 697. [Google Scholar] [CrossRef]
- Bhaumik, D.; Dutta-Roy, B.; Ghosh, G. Classical limit of the hydrogen atom. J. Phys. A Math. Gen. 1986, 19, 1355. [Google Scholar] [CrossRef]
- McAnally, D.; Bracken, A. Quasiclassical states of the Coulomb system and SO(4, 2). J. Phys. A Math. Gen. 1990, 23, 2027. [Google Scholar] [CrossRef]
- Pitak, A.; Mostowski, J. Classical limit of position and matrix elements for Rydberg atoms. Eur. J. Phys. 2018, 39, 025402. [Google Scholar] [CrossRef]
- Nauenberg, M. Quantum wavepackets on Kepler elliptical orbits. Phys. Rev. A 1989, 40l, 1133. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.S. Classical limit of the hydrogen atom. Am. J. Phys. 1973, 41, 525–530. [Google Scholar] [CrossRef]
- Leonhardt, U. Measuring the Quantum State of Light; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Barut, A.; Girardello, L. New “coherent” states associated with non-compact groups. Commun. Math. Phys. 1971, 21, 41–55. [Google Scholar] [CrossRef]
- Satyanarayana, M. Squeezed coherent states of the hydrogen atom. J. Phys. A Math. Gen. 1986, 19, 1973. [Google Scholar] [CrossRef]
- Liu, Q.; Hu, B. The hydrogen atom’s quantum-to-classical correspondence in Heisenberg’s correspondence principle. J. Phys. A Math. Gen. 2001, 34, 5713. [Google Scholar] [CrossRef]
- Zverev, V.; Rubinstein, B. Dynamical symmetries and well-localized hydrogenic wave packets. Proc. Inst. Math. Nas Ukr. 2004, 50, 1018. [Google Scholar]
- The wave function in momentum space ψ(p) is obtained by multiplying Ynlm by the normalizing factor , cf Equation (150).
- Nandi, S.; Shastry, C. Classical limit of the two-dimensional and three-dimensional hydrogen atom. J. Phys. A Math. Gen. 1989, 22, 1005. [Google Scholar] [CrossRef] [Green Version]
- Pauling, L.; Wilson, E.B. Introduction to Quantum Mechanics; McGraw-Hill: New York, NY, USA, 1935; p. 36. [Google Scholar]
- Lamb, W.; Retherford, R. Fine Structure of the H Atom, Part I. Phys. Rev. 1950, 79, 549. [Google Scholar] [CrossRef]
- Bethe, H.; Salpeter, E. The Quantum Mechanics of One and Two Electron Atoms; Springer: Berlin, Germany, 1957. [Google Scholar]
- Milonni, P. The Quantum Vacuum; Academic Press: San Diego, CA, USA, 1994. [Google Scholar]
- Eides, M.; Grotch, H.; Shelyuto, V. Theory of Light Hydrogenic Bound States, Springer Tracts in Modern Physics 222; Springer: Berlin, Germany, 2007. [Google Scholar]
- Rau, A.; Alber, G. Shared symmetries of the hydrogen atom and the two-bit system. J. Phys. B At. Mol. Opt. 2017, 50, 242001. [Google Scholar] [CrossRef] [Green Version]
- Castro, P.; Kullock, R. Physics of the SOp(4) Hydrogen Atom. Theo. Math. Phys. 2015, 185, 1678. [Google Scholar] [CrossRef] [Green Version]
- Alavi, A.; Rezaei, N. Dirac equation, hydrogen atom spectrum and the Lamb shift in dynamical non-commutative spaces. Pramana-J. Phys. 2017, 88, 5. [Google Scholar] [CrossRef]
- Gnatenko, K.P.; Krynytskyi, Y.S.; Tkachuk, V.M. Perturbation of the ns levels of the hydrogen atom in rotationally invariant noncommutative space. Mod. Phys. Lett. 2015, 30, 8. [Google Scholar] [CrossRef] [Green Version]
- Haghighat, M.; Khorsandi, M. Hydrogen and muonic hydrogen atomic spectra in non-commutative space-time. Eur. Phys. J. 2015, 75, 1. [Google Scholar] [CrossRef] [Green Version]
- Praxmeyer, L. Hydrogen atom in phase space: The Wigner representation. J. Phys. A Math. Gen. 2006, 39, 14143. [Google Scholar] [CrossRef]
- Jones, M.; Potvliege, M.R.; Spannowsky, M. Probing new physics using Rydberg states of atomic hydrogen. Phys. Rev. Res. 2020, 2, 013244. [Google Scholar] [CrossRef] [Green Version]
- Jentschura, U.; Mohr, P. Calculation of hydrogenic Bethe logarithms for Rydberg States. Phys. Rev. A 2002, 72, 012110. [Google Scholar] [CrossRef] [Green Version]
- Jentschura, U.; LeBigot, E.; Evers, J.; Mohr, P.; Keitel, C. Relativistic and radiative shifts for Rydberg states. J. Phys. B At. Mol. Opt. Phys. 2005, 38, S97. [Google Scholar] [CrossRef] [Green Version]
- Jentschura, U.; Mohr, P.; Tan, J. Fundamental constants and tests of theory in Rydberg states of one-electron ions. J. Phys. B At. Mol. Opt. Phys. 2010, 43, 074002. [Google Scholar] [CrossRef]
- Cantu, S.H.; Venkatramani, A.V.; Xu, W. Repulsive photons in a quantum nonlinear medium. Nat. Phys. 2020. [Google Scholar] [CrossRef]
Degeneracy Groups for Bound States in a Coulomb Potential | |||||
---|---|---|---|---|---|
Equation | Degeneracy | Conserved Quantities | Degeneracy Group | Representation | Dimension |
Schrodinger | E indep. of , | , | , | ||
Klein-Gordon | E indep. of | Casimir op. is | |||
Klein-Gordon without term | E indep. of , | , | , | ||
Dirac | E depends on J, n only | 2(2J+1) |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maclay, G.J. Dynamical Symmetries of the H Atom, One of the Most Important Tools of Modern Physics: SO(4) to SO(4,2), Background, Theory, and Use in Calculating Radiative Shifts. Symmetry 2020, 12, 1323. https://doi.org/10.3390/sym12081323
Maclay GJ. Dynamical Symmetries of the H Atom, One of the Most Important Tools of Modern Physics: SO(4) to SO(4,2), Background, Theory, and Use in Calculating Radiative Shifts. Symmetry. 2020; 12(8):1323. https://doi.org/10.3390/sym12081323
Chicago/Turabian StyleMaclay, G. Jordan. 2020. "Dynamical Symmetries of the H Atom, One of the Most Important Tools of Modern Physics: SO(4) to SO(4,2), Background, Theory, and Use in Calculating Radiative Shifts" Symmetry 12, no. 8: 1323. https://doi.org/10.3390/sym12081323
APA StyleMaclay, G. J. (2020). Dynamical Symmetries of the H Atom, One of the Most Important Tools of Modern Physics: SO(4) to SO(4,2), Background, Theory, and Use in Calculating Radiative Shifts. Symmetry, 12(8), 1323. https://doi.org/10.3390/sym12081323