Symmetry Breaking and Photomechanical Behavior of Photochromic Organic Crystals
Abstract
:1. Introduction
2. History and Background of Photomechanical Molecular Crystals
3. Photomechanical Bending Motion of Molecular Crystals: Right–Left Symmetry Breaking
4. Crystal Twisting: Chiral Symmetry Breaking by Intrinsic Factors
5. Control of Chiral Crystal Twisting by Control of Light Illumination as an Extrinsic Factor
6. Future Directions
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Glashow, S.L. Partial-symmetries of Weak Interactions. Nucl. Phys. 1961, 22, 579–588. [Google Scholar] [CrossRef]
- Salam, A.; Ward, J.C. Electromagnetic and Weak Interactions. Phys. Lett. 1964, 13, 168–171. [Google Scholar] [CrossRef]
- Weinberg, S. A Model of Leptons. Phys. Rev. Lett. 1967, 19, 1264–1266. [Google Scholar] [CrossRef]
- Nambu, Y. Axial Vector Current Conservation in Weak Interactions. Phys. Rev. Lett. 1960, 4, 380. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, M.; Maskawa, T. CP-Violation in the Renormalizable Theory of Weak Interaction. Prog. Theor. Phys. 1973, 49, 652–657. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, R.; Woodward, R.B. Orbital Symmetry Control of Chemical Reactions. Science 1970, 167, 825–831. [Google Scholar] [CrossRef] [Green Version]
- Fukui, K.; Yonezawa, T.; Shingu, H. A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons. J. Chem. Phys. 1952, 20, 722. [Google Scholar] [CrossRef]
- Kuroda, R.; Endo, B.; Abe, M.; Shimizu, M. Chiral Blastomere Arrangement Dictates Zygotic Left-right Asymmetry Pathway in Snails. Nature 2009, 462, 790–794. [Google Scholar] [CrossRef]
- Kuroha, M.; Nambu, S.; Hattori, S.; Kitagawa, Y.; Niimura, K.; Mizuno, Y.; Hamba, F.; Ishii, K. Chiral Supramolecular Nanoarchitectures from Macroscopic Mechanical Rotations: Effects on Enantioselective Aggregation Behavior of Phthalocyanines. Angew. Chem. Int. Ed. 2019, 58, 18454–18459. [Google Scholar] [CrossRef]
- Abakumov, G.A.; Nevodchikov, V.I. Thermomechanical and Photomechanical Effects Observed on Crystals of a Free-radical Complex. Dokl. Akad. Nauk Sssr 1982, 266, 1407–1410. [Google Scholar]
- Al-Kaysi, R.O.; Mueller, A.M.; Bardeen, C.J. Photochemically Driven Shape Changes of Crystalline Organic Nanorods. J. Am. Chem. Soc. 2006, 128, 15938–15939. [Google Scholar] [CrossRef] [PubMed]
- Kobatake, S.; Takami, S.; Muto, H.; Ishikawa, T.; Irie, M. Rapid and Reversible Shape Changes of Molecular Crystals on Photoirradiation. Nature 2007, 446, 778–781. [Google Scholar] [CrossRef] [PubMed]
- Koshima, H.; Ojima, N.; Uchimoto, H. Mechanical Motion of Azobenzene Crystals upon Photoirradiation. J. Am. Chem. Soc. 2009, 131, 6890–6891. [Google Scholar] [CrossRef] [PubMed]
- Koshima, H.; Takechi, K.; Uchimoto, H.; Shiro, M.; Hashizume, D. Photomechanical Bending of Salicylideneaniline Crystals. Chem. Commun. 2011, 47, 11423–11425. [Google Scholar] [CrossRef]
- Koshima, H.; Nakaya, H.; Uchimoto, H.; Ojima, N. Photomechanical Motion of Furylfulgide Crystals. Chem. Lett. 2012, 41, 107–109. [Google Scholar] [CrossRef]
- Koshima, H.; Ojima, N. Photomechanical Bending of 4-Aminoazobenzene Crystals. Dye. Pigm. 2012, 92, 798–801. [Google Scholar] [CrossRef]
- Uchida, K.; Sukata, S.I.; Matsuzawa, Y.; Akazawa, M.; de Jong, J.J.D.; Katsonis, N.; Kojima, Y.; Nakamura, S.; Areephong, J.; Meetsma, A.; et al. Photoresponsive Rolling and Bending of Thin Crystals of Chiral Diarylethenes. Chem. Commun. 2008, 3, 326–328. [Google Scholar] [CrossRef] [Green Version]
- Morimoto, M.; Irie, M. A Diarylethene Cocrystal that Converts Light into Mechanical Work. J. Am. Chem. Soc. 2010, 132, 14172–14178. [Google Scholar] [CrossRef]
- Terao, F.; Morimoto, M.; Irie, M. Light-Driven Molecular-Crystal Actuators: Rapid and Reversible Bending of Rodlike Mixed Crystals of Diarylethene Derivatives. Angew. Chem. Int. Ed. 2012, 51, 901–904. [Google Scholar] [CrossRef]
- Kuroki, L.; Takami, S.; Yoza, K.; Morimoto, M.; Irie, M. Photoinduced Shape Changes of Diarylethene Single Crystals: Correlation between Shape Changes and Molecular Packing. Photochem. Photobiol. Sci. 2010, 9, 221–225. [Google Scholar] [CrossRef]
- Kitagawa, D.; Kobatake, S. Crystal Thickness Dependence of Photoinduced Crystal Bending of 1,2-Bis(2-methyl-5-(4-(1-naphthoyloxymethyl)phenyl)-3-thienyl)perfluorocyclopentene. J. Phys. Chem. C 2013, 117, 20887–20892. [Google Scholar] [CrossRef]
- Kitagawa, D.; Nishi, H.; Kobatake, S. Photoinduced Twisting of a Photochromic Diarylethene Crystal. Angew. Chem. Int. Ed. 2013, 52, 9320–9322. [Google Scholar] [CrossRef] [PubMed]
- Kitagawa, D.; Kobatake, S. Crystal Thickness Dependence of the Photoinduced Crystal Bending of 1-(5-Methyl-2-(4-(p-vinylbenzoyloxymethyl)phenyl)-4-thiazolyl)-2-(5-methyl-2-phenyl-4-thiazolyl)perfluoro-cyclopentene. Photochem. Photobiol. Sci. 2014, 13, 764–769. [Google Scholar] [CrossRef] [PubMed]
- Kitagawa, D.; Iwaihara, C.; Nishi, H.; Kobatake, S. Quantitative Evaluation of Photoinduced Bending Speed of Diarylethene Crystals. Crystals 2015, 5, 551–561. [Google Scholar] [CrossRef]
- Al-Kaysi, R.O.; Bardeen, C.J. Reversible Photoinduced Shape Changes of Crystalline Organic Nanorods. Adv. Mater. 2007, 19, 1276–1280. [Google Scholar] [CrossRef]
- Zhu, L.; Al-Kaysi, R.O.; Bardeen, C.J. Reversible Photoinduced Twisting of Molecular Crystal Microribbons. J. Am. Chem. Soc. 2011, 133, 12569–12575. [Google Scholar] [CrossRef]
- Zhu, L.; Al-Kaysi, R.O.; Dillon, R.J.; Tham, F.S.; Bardeen, C.J. Crystal Structures and Photophysical Properties of 9-Anthracene Carboxylic Acid Derivatives for Photomechanical Applications. Cryst. Growth Des. 2011, 11, 4975–4983. [Google Scholar] [CrossRef]
- Kim, T.; Zhu, L.; Mueller, L.J.; Bardeen, C.J. Dependence of the Solid-state Photomechanical Response of 4-Chlorocinnamic Acid on Crystal Shape and Size. CrystEngComm 2012, 14, 7792–7799. [Google Scholar] [CrossRef]
- Kim, T.; Al-Muhanna, M.K.; Al-Suwaidan, S.D.; Al-Kaysi, R.O.; Bardeen, C.J. Photoinduced Curling of Organic Molecular Crystal Nanowires. Angew. Chem. Int. Ed. 2013, 52, 6889–6893. [Google Scholar] [CrossRef]
- Kitagawa, D.; Kawasaki, K.; Tanaka, R.; Kobatake, S. Mechanical Behavior of Molecular Crystals Induced by Combination of Photochromic Reaction and Reversible Single-Crystal-to-Single-Crystal Phase Transition. Chem. Mater. 2017, 29, 7524–7532. [Google Scholar] [CrossRef] [Green Version]
- Tong, F.; Kitagawa, D.; Dong, X.; Kobatake, S.; Bardeen, C.J. Photomechanical Motion of Diarylethene Molecular Crystal Nanowires. Nanoscale 2018, 10, 3393–3398. [Google Scholar] [CrossRef] [PubMed]
- Hatano, E.; Morimoto, M.; Imai, T.; Hyodo, K.; Fujimoto, A.; Nishimura, R.; Sekine, A.; Yasuda, N.; Yokojima, S.; Nakamura, S.; et al. Photosalient Phenomena that Mimic Impatiens Are Observed in Hollow Crystals of Diarylethene with a Perfluorocyclohexene Ring. Angew. Chem. Int. Ed. 2017, 56, 12576–12580. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, Y.; Morimoto, M.; Yasuda, N.; Hyodo, K.; Yokojima, S.; Nakamura, S.; Uchida, K. Photosalient Effect of Diarylethene Crystals of Thiazoyl and Thienyl Derivatives. Chem. Eur. J. 2019, 25, 7874–7880. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, T.; Fujisawa, J.; Shiro, M.; Koshima, H.; Asahi, T. Mechanical Motion of Chiral Azobenzene Crystals with Twisting upon Photoirradiation. Chem. Eur. J. 2016, 22, 7950–7958. [Google Scholar] [CrossRef] [PubMed]
- Bushuyev, O.S.; Singleton, T.A.; Barrett, C.J. Fast, Reversible, and General Photomechanical Motion in Single Crystals of Various Azo Compounds Using Visible Light. Adv. Mater. 2013, 25, 1796–1800. [Google Scholar] [CrossRef]
- Bushuyev, O.S.; Tomberg, A.; Friscic, T.; Barrett, C.J. Shaping Crystals with Light: Crystal-to-Crystal Isomerization and Photomechanical Effect in Fluorinated Azobenzenes. J. Am. Chem. Soc. 2013, 135, 12556–12559. [Google Scholar] [CrossRef]
- Samanta, R.; Kitagawa, D.; Mondal, A.; Bhattacharya, M.; Annadhasan, M.; Mondal, S.; Chandrasekar, R.; Kobatake, S.; Reddy, C.M. Mechanical Actuation and Patterning of Rewritable Crystalline Monomer−Polymer Heterostructures via Topochemical Polymerization in a Dual-Responsive Photochromic Organic Material. ACS Appl. Mater. Interfaces 2020, 12, 16856–16863. [Google Scholar] [CrossRef]
- Samanta, R.; Ghosh, S.; Devarapalli, R.; Reddy, C.M. Visible Light Mediated Photopolymerization in Single Crystals: Photomechanical Bending and Thermomechanical Unbending. Chem. Mater. 2018, 30, 577–581. [Google Scholar] [CrossRef]
- Naumov, P.; Kowalik, J.; Solntsev, K.M.; Baldridge, A.; Moon, J.-S.; Kranz, C.; Tolbert, L.M. Topochemistry and Photomechanical Effects in Crystals of Green Fluorescent Protein-like Chromophores: Effects of Hydrogen Bonding and Crystal Packing. J. Am. Chem. Soc. 2010, 132, 5845–5857. [Google Scholar] [CrossRef]
- Nath, N.K.; Pejov, L.; Nichols, S.M.; Hu, C.; Saleh, N.; Kahr, B.; Naumov, P. Model for Photoinduced Bending of Slender Molecular Crystals. J. Am. Chem. Soc. 2014, 136, 2757–2766. [Google Scholar] [CrossRef]
- Nath, N.K.; Runcevski, T.; Lai, C.Y.; Chiesa, M.; Dinnebier, R.E.; Naumov, P. Surface and Bulk Effects in Photochemical Reactions and Photomechanical Effects in Dynamic Molecular Crystals. J. Am. Chem. Soc. 2015, 137, 13866–13875. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Karothu, D.P.; Ahmed, E.; Naumov, P.; Nath, N.K. All-in-One: Thermally Twistable, Photobendable, Elastically Deformable and Self-Healable Soft Crystal. Angew. Chem. Int. Ed. 2018, 57, 8498–8502. [Google Scholar] [CrossRef] [PubMed]
- Halabi, J.M.; Ahmed, E.; Catalano, L.; Karothu, D.P.; Rezgui, R.; Naumov, P. Spatial Photocontrol of the Optical Output from an Organic Crystal Waveguide. J. Am. Chem. Soc. 2019, 141, 14966–14970. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Tong, F.; Al-Kaysi, R.O.; Bardeen, C.J. Photomechanical Effects in Photochromic Crystals. In Photomechanical Materials, Composites, and Systems; White, T.J., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; Chapter 7; pp. 233–274. [Google Scholar]
- Irie, M.; Fukaminato, T.; Matsuda, K.; Kobatake, S. Photochromism of diarylethene molecules and crystals: Memories, switches, and actuators. Chem. Rev. 2014, 114, 12174–12277. [Google Scholar] [CrossRef] [PubMed]
- Hirano, A.; Hashimoto, T.; Kitagawa, D.; Kono, K.; Kobatake, S. Dependence of Photoinduced Bending Behavior of Diarylethene Crystals on Ultraviolet Irradiation Power. Cryst. Growth Des. 2017, 17, 4819–4825. [Google Scholar] [CrossRef] [Green Version]
- Kitagawa, D.; Tanaka, R.; Kobatake, S. Dependence of Photoinduced Bending Behavior of Diarylethene Crystals on Irradiation Wavelength of Ultraviolet Light. Phys. Chem. Chem. Phys. 2015, 17, 27300–27305. [Google Scholar] [CrossRef] [PubMed]
- Hirano, A.; Kitagawa, D.; Kobatake, S. Photomechanical Bending Behavior of Photochromic Diarylethene Crystals Induced under Polarized Light. CrystEngComm 2019, 21, 2495–2501. [Google Scholar] [CrossRef]
- Shtukenberg, A.G.; Punin, Y.O.; Gujral, A.; Kahr, B. Growth Actuated Bending and Twisting of Single Crystals. Angew. Chem. Int. Ed. 2014, 53, 672–699. [Google Scholar] [CrossRef]
- Rai, R.; Krishnan, B.P.; Sureshan, K.M. Chirality-Controlled Spontaneous Twisting of Crystals Due to Thermal Topochemical Reaction. Proc. Natl. Acad. Sci. USA 2018, 115, 2896–2901. [Google Scholar] [CrossRef] [Green Version]
- Tong, F.; Xu, W.; Al-Haidar, M.; Kitagawa, D.; Al-Kaysi, R.O.; Bardeen, C.J. Photomechanically Induced Magnetic Field Response by Controlling Molecular Orientation in 9-Methylanthracene Microcrystals. Angew. Chem. Int. Ed. 2018, 57, 7080–7084. [Google Scholar] [CrossRef]
- Iamsaard, S.; Aßhoff, S.J.; Matt, B.; Kudernac, T.; Cornelissen, J.J.; Fletcher, S.P.; Katsonis, N. Conversion of Light into Macroscopic Helical Motion. Nat. Chem. 2014, 6, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Al-Kaysi, R.O.; Bardeen, C.J. Photoinduced Ratchet-Like Rotational Motion of Branched Molecular Crystals. Angew. Chem. Int. Ed. 2016, 55, 7073–7076. [Google Scholar] [CrossRef] [PubMed]
- Hickenboth, C.R.; Moore, J.S.; White, S.R.; Sottos, N.R.; Baudry, J.; Wilson, S.R. Biasing Reaction Pathways with Mechanical Force. Nature 2007, 446, 423–427. [Google Scholar] [CrossRef]
- Kitagawa, D.; Tsujioka, H.; Tong, F.; Dong, X.; Bardeen, C.J.; Kobatake, S. Control of Photomechanical Crystal Twisting by Illumination Direction. J. Am. Chem. Soc. 2018, 140, 4208–4212. [Google Scholar] [CrossRef] [PubMed]
- Kitagawa, D.; Kobatake, S. Photoreversible Current ON/OFF Switching by the Photoinduced Bending of Gold-Coated Diarylethene Crystals. Chem. Commun. 2015, 51, 4421–4424. [Google Scholar] [CrossRef] [PubMed]
- Lan, T.; Chen, W. Hybrid Nanoscale Organic Molecular Crystals Assembly as a Photon-Controlled Actuator. Angew. Chem. Int. Ed. 2013, 52, 6496–6500. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Yang, X.; Chen, Y.; Yu, K.; Gao, J.; Liu, Z.; Cheng, P.; Zhang, Z.; Aguila, B.; Ma, S. Fabrication of Light-Triggered Soft Artificial Muscles via a Mixed-Matrix Membrane Strategy. Angew. Chem. Int. Ed. 2018, 57, 10192–10196. [Google Scholar] [CrossRef]
- Sahoo, S.C.; Nath, N.K.; Zhang, L.; Semreen, M.H.; Al-Tel, T.H.; Naumov, P. Actuation Based on Thermo/photosalient Effect: A Biogenic Smart Hybrid Driven by Light and Heat. RSC Adv. 2014, 4, 7640–7647. [Google Scholar] [CrossRef]
- Koshima, H.; Matsudomi, M.; Uemura, Y.; Kimura, F.; Kimura, T. Light-driven Bending of Polymer Films in Which Salicylidenephenylethylamine Crystals are Aligned Magnetically. Chem. Lett. 2013, 42, 1517–1519. [Google Scholar] [CrossRef]
- Dong, X.; Tong, F.; Hanson, K.M.; Al-Kaysi, R.O.; Kitagawa, D.; Kobatake, S.; Bardeen, C.J. Hybrid Organic–Inorganic Photon-Powered Actuators Based on Aligned Diarylethene Nanocrystals. Chem. Mater. 2019, 31, 1016–1022. [Google Scholar] [CrossRef]
- Dong, X.; Guo, T.; Kitagawa, D.; Kobatake, S.; Palffy-Muhoray, P.; Bardeen, C.J. Effects of Template and Molecular Nanostructure on the Performance of Organic–Inorganic Photomechanical Actuator Membranes. Adv. Funct. Mater. 2020, 30, 1902396. [Google Scholar] [CrossRef]
- Tong, F.; Xu, W.; Guo, T.; Lui, B.F.; Hayward, R.C.; Palffy-Muhoray, P.; Al-Kaysi, R.O.; Bardeen, C.J. Photomechanical Molecular Crystals and Nanowire Assemblies Based on the [2+2] Photodimerization of a Phenylbutadiene Derivative. J. Mater. Chem. C 2020, 8, 5036–5044. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kitagawa, D.; Bardeen, C.J.; Kobatake, S. Symmetry Breaking and Photomechanical Behavior of Photochromic Organic Crystals. Symmetry 2020, 12, 1478. https://doi.org/10.3390/sym12091478
Kitagawa D, Bardeen CJ, Kobatake S. Symmetry Breaking and Photomechanical Behavior of Photochromic Organic Crystals. Symmetry. 2020; 12(9):1478. https://doi.org/10.3390/sym12091478
Chicago/Turabian StyleKitagawa, Daichi, Christopher J. Bardeen, and Seiya Kobatake. 2020. "Symmetry Breaking and Photomechanical Behavior of Photochromic Organic Crystals" Symmetry 12, no. 9: 1478. https://doi.org/10.3390/sym12091478
APA StyleKitagawa, D., Bardeen, C. J., & Kobatake, S. (2020). Symmetry Breaking and Photomechanical Behavior of Photochromic Organic Crystals. Symmetry, 12(9), 1478. https://doi.org/10.3390/sym12091478