Constraints on the Anomalous Wtb Couplings from B-Physics Experiments
Abstract
:1. Introduction
2. Effective Lagrangian for Weak FCNC -Decays
- (i)
- the coefficients and , as well as the amplitude of the B- oscillations do not get contributions from and .
- (ii)
- the coefficient involves only one linear combination of and .
3. Bounds on Anomalous Couplings
- : data from [26] in the lowest -bins: GeV and GeV. The differential distributions and asymmetries for these decays were calculated in [27]; convenient formulas parameterizing the theoretical results as functions of the Wilson coefficients were given in [28]. In this channel, the accuracy of the experimental results is slightly better than that of the theoretical predictions: the form factors at small necessary for calculating the differential branching fractions of interest come mainly from Light-Cone QCD Sum Rules (LCSR); this method unfortunately does not allow a solid control over the systematic uncertainties of the calculated form factors [29,30] (cf. [31,32]). We assign a 15% uncertainty on the LCSR predictions for the form factors, yielding a 30% uncertainty on the differential distributions.
- : We make use of the LHCb data [33] in two bins, GeV and GeV (see also [34]). The necessary form factors come from LCSRs, e.g., [16,31,32]. The most recent analysis [32] yields the form factors and . These numbers are somewhat smaller than those from the previous analysis [16]: and . It is also noteworthy that the uncertainties reported in [32] are considerably larger compared to the previous estimates. Taking into account the already mentioned problem with the assignment of uncertainties within QCD sum rules, for the analysis, we employ the form factor parametrizations from [35], which correspond to and , and assign to them a 15% theoretical uncertainty. The full contribution of the charming loops, including the factorizable and the nonfactorizable effects, from [16], is taken into account. Convenient expressions for (in GeV) as functions of the additions to the Wilson coefficients in two bins of low- are given below:
4. Discussion and Conclusions
- Taking into account that any analysis of the B-physics data involves the theoretical calculation of complicated nonperturbative QCD effects (e.g., related to B-meson in the initial state, light mesons in the final state, charming-loops, and charmonia resonances), only those modes where such effects may be controlled with good accuracy are appropriate for the analysis of the anomalous couplings. Presently, such effects are limited to FCNC radiative or semileptonic B-decays in the region of small momentum transfers of the pair, purely leptonic B-decays, and the oscillation of neutral B-mesons. In other interesting processes/kinematic regions, where the gluon penguin operator or four-quark operators provide sizeable or dominant contributions, the nonperturbative QCD effects are very difficult to calculate with good accuracy; therefore, such processes are not suitable for the analysis of the anomalous couplings from the data. Consequently, B-decays can provide bounds on three quantities: the anomalous couplings , , and one linear combination f of two other couplings, and , which appears in the Wilson coefficient .
- Allowing simultaneous deviations of all anomalous couplings from zero and calculating the 1D distributions by integrating the 3D distributions lead to rather visible differences from the 1D distributions obtained by allowing only one anomalous coupling to take a non-SM value and keeping all other couplings at zero; see Figure 2.
- Figure 1 and Figure 2 show our results for the distributions of the anomalous couplings at the scale of . In all considered 2D and 1D distributions, the SM values of the couplings belong to the region allowed at the 95% CL. However, the SM values lie beyond the 68% CL region of the anomalous couplings. To obtain further constraints on the anomalous couplings, in particular, for constraining the couplings and , separately, combining bounds on the anomalous couplings from the B-physics data with the direct bounds from single top quark production is a promising route to new physics [36,37,38]. The direct constraints on the anomalous couplings from LHC data depend on the scenarios of the anomalous couplings (1D or 2D) used in the analysis. Within 1D scenarios, indirect constraints from B-physics experiments are presently much more restrictive compared to the direct top quark measurements [37].
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Buchmuller, W.; Wyler, D. Effective Lagrangian Analysis of New Interactions and Flavor Conservation. Nucl. Phys. B 1986, 268, 621. [Google Scholar] [CrossRef] [Green Version]
- Kane, G.L.; Ladinsky, G.A.; Yuan, C.P. Using the top quark for testing Standard Model polarization and CP predictions. Phys. Rev. D 1992, 45, 124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drobnak, J.; Fajfer, S.; Kamenik, J.F. Probing anomalous tWb interactions with rare B decays. Nucl. Phys. B 2012, 855, 82. [Google Scholar] [CrossRef] [Green Version]
- Grzadkowski, B.; Misiak, M. Anomalous Wtb coupling effects in the weak radiative B-meson decay. Phys. Rev. D 2008, 78, 077501, Erratum in Phys. Rev. D 2011, 84, 059903. [Google Scholar] [CrossRef] [Green Version]
- Fischer, M.; Groote, S.; Körner, J.G. T-odd correlations in polarized top quark decays in the sequential decay t(↑)→XbW(→l++νl) and in the quasi three-body decay t(↑)→Xb+l++νl). Phys. Rev. D 2018, 97, 093001. [Google Scholar] [CrossRef] [Green Version]
- Groote, S.; Körner, J.G. Positivity bound on the imaginary part of the right-chiral tensor coupling gR in polarized top quark decay. Phys. Rev. D 2017, 96, 111301. [Google Scholar] [CrossRef] [Green Version]
- Alioli, S.; Cirigliano, V.; Dekens, W.; de Vries, J.; Mereghetti, E. Right-handed charged currents in the era of the Large Hadron Collider. JHEP 2017, 1705, 086. [Google Scholar] [CrossRef] [Green Version]
- Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Aşılar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; et al. Search for anomalous Wtb couplings and flavour-changing neutral currents in t-channel single top quark production in pp-collisions at = 7 and 8 TeV. JHEP 2017, 1702, 028. [Google Scholar] [CrossRef]
- Drobnak, J.; Fajfer, S.; Kamenik, J.F. Interplay of t→bW Decay and Bq Meson Mixing in Minimal Flavor Violating Models. Phys. Lett. B 2011, 701, 234. [Google Scholar] [CrossRef]
- Grinstein, B.; Savage, M.J.; Wise, M.B. B→X(s)e+e− in the Six Quark Model. Nucl. Phys. B 1989, 319, 271. [Google Scholar] [CrossRef]
- Buras, A.J.; Munz, M. Effective Hamiltonian for B→X(s)e+e− beyond leading logarithms in the NDR and HV schemes. Phys. Rev. D 1995, 52, 186. [Google Scholar] [CrossRef] [Green Version]
- Buchalla, G.; Buras, A.J.; Lautenbacher, M.E. Weak decays beyond leading logarithms. Rev. Mod. Phys. 1996, 68, 1125. [Google Scholar] [CrossRef] [Green Version]
- Altmannshofer, W.; Straub, D.M. New physics in b→s transitions after LHC run 1. Eur. Phys. J. C 2015, 75, 382. [Google Scholar] [CrossRef] [Green Version]
- Bobeth, C.; Misiak, M.; Urban, J. Matching conditions for b→sγ and b→s gluon in extensions of the standard model. Nucl. Phys. B 2000, 567, 153. [Google Scholar] [CrossRef] [Green Version]
- Bobeth, C.; Misiak, M.; Urban, J. Photonic penguins at two loops and mt dependence of BR[B→Xsl+l−]. Nucl. Phys. B 2000, 574, 291. [Google Scholar] [CrossRef] [Green Version]
- Khodjamirian, A.; Mannel, T.; Pivovarov, A.; Wang, Y.-M. Charm-loop effect in B→K(*)l+l− and B→K*γ. JHEP 2010, 9, 089. [Google Scholar] [CrossRef] [Green Version]
- Kozachuk, A.; Melikhov, D.; Nikitin, N. Rare FCNC radiative leptonic Bs,d→γl+l− decays in the standard model. Phys. Rev. D 2018, 97, 053007. [Google Scholar] [CrossRef] [Green Version]
- Kozachuk, A.; Melikhov, D. Revisiting nonfactorizable charm-loop effects in exclusive FCNC B-decays. Phys. Lett. B 2018, 786, 378. [Google Scholar] [CrossRef]
- Melikhov, D. Charming loops in exclusive rare FCNC B–decays. EPJ Web Conf. 2009, 222, 01007. [Google Scholar] [CrossRef] [Green Version]
- Lenz, A.; Nierste, U.; Charles, J.; Descotes-Genon, S.; Jantsch, A.; Kaufhold, C.; Lacker, H.; Monteil, S.; Niess, V.; T’Jampens, S.; et al. Anatomy of New Physics in B-B¯ mixing. Phys. Rev. D 2011, 83, 036004. [Google Scholar] [CrossRef] [Green Version]
- Amhis, Y.; Banerjee, S.; Ben-Haim, E.; Bernlochner, F.; Bozek, A.; Bozzi, C.; Chrząszcz, M.; Dingfelder, J.; Duell, S.; Gersabeck, M.; et al. Averages of b-hadron, c-hadron, and π-lepton properties as of 2018. arXiv 2019, arXiv:1909.12524. [Google Scholar]
- Aoki, S.; Aoki, Y.; Becirevic, D.; Blum, T.; Colangelo, G.; Collins, S.; Morte, M.D.; Dimopoulos, P.; Durr, S.; Fukaya, H.; et al. FLAG Review 2019: Flavour Lattice Averaging Group (FLAG). Eur. Phys. J. C 2020, 80, 113. [Google Scholar] [CrossRef] [Green Version]
- Descotes-Genon, S.; Ghosh, D.; Matias, J.; Ramon, M. Exploring New Physics in the C7- plane. J. High Energy Phys. 2011, 1106, 099. [Google Scholar] [CrossRef] [Green Version]
- Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; et al. Measurement of the →μ+μ− branching fraction and effective lifetime and search for B0→μ+μ− decays. Phys. Rev. Lett. 2017, 118, 191801. [Google Scholar] [CrossRef] [Green Version]
- Hermann, T.; Misiak, M.; Steinhauser, M. Three-loop QCD corrections to Bs→μ+μ−. J. High Energy Phys. 2013, 1312, 097. [Google Scholar] [CrossRef] [Green Version]
- Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; et al. Measurements of the S-wave fraction in B0→K+π−μ+μ− decays and the B0→K*(892)0μ+μ− differential branching fraction. J. High Energy Phys. 2017, 1611, 047, Erratum in 2017, 1704, 142. [Google Scholar] [CrossRef]
- Altmannshofer, W.; Ball, P.; Bharucha, A.; Buras, A.; Straub, D.M.; Wick, M. Symmetries and asymmetries of B→K*μ+μ− decays in the Standard Model and beyond. J. High Energy Phys. 2009, 0901, 019. [Google Scholar] [CrossRef] [Green Version]
- Capdevila, B.; Crivellin, A.; Descotes-Genon, S.; Matias, J.; Virto, J. Patterns of New Physics in b→sl+l− transitions in the light of recent data. J. High Energy Phys. 2018, 1801, 093. [Google Scholar] [CrossRef] [Green Version]
- Melikhov, D. Hadron form factors from sum rules for vacuum-to-hadron correlators. Phys. Lett. B 2009, 671, 450. [Google Scholar] [CrossRef]
- Lucha, W.; Melikhov, D.; Sazdjian, H.; Simula, S. Effective continuum threshold for vacuum-to-bound-state correlators. Phys. Rev. D 2009, 80, 114028. [Google Scholar] [CrossRef] [Green Version]
- Bharucha, A.; Straub, D.M.; Zwicky, R. B→Vl+l− in the Standard Model from light-cone sum rules. J. High Energy Phys. 2016, 1608, 098. [Google Scholar] [CrossRef] [Green Version]
- Gubernari, N.; Kokulu, A.; van Dyk, D. B→P and B→V Form Factors from B-Meson Light-Cone Sum Rules beyond Leading Twist. J. High Energy Phys. 2019, 1901, 150. [Google Scholar] [CrossRef] [Green Version]
- Aaij, R.; Amhis, Y.; Barsuk, S.; Callot, O.; He, J.; Kochebina, O.; Lefrançois, J.; Machefert, F.; Martin Sanchez, A.; Nicol, M.; et al. Differential branching fractions and isospin asymmetries of B→K(*)μ+μ− decays. J. High Energy Phys. 2014, 1406, 133. [Google Scholar] [CrossRef] [Green Version]
- Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; et al. Measurement of the phase difference between short- and long-distance amplitudes in the B+→K+μ+μ− decay. Eur. Phys. J. C 2017, 77, 161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, J.A.; Bazavov, A.; Bernard, C.; Bouchard, C.M.; DeTar, C.; Du, D.; El-Khadra, A.X.; Foley, J.; Freeland, E.D.; Gámiz, E.; et al. B→Kl+l− Decay Form Factors from Three-Flavor Lattice QCD. Phys. Rev. D 2016, 93, 025026. [Google Scholar] [CrossRef] [Green Version]
- Dutta, S.; Goyal, A.; Kumar, M.; Mellado, B. Measuring anomalous Wtb couplings at e−p collider. Eur. Phys. J. 2015, C 75, 577. [Google Scholar] [CrossRef]
- Kozachuk, A. Combining direct and indirect constraints on anomalous Wtb couplings. EPJ Web Conf. 2019, 222, 04008. [Google Scholar] [CrossRef]
- Bißmann, S.; Erdmann, J.; Grunwald, C.; Hiller, G.; Kröninger, K. Constraining top quark couplings combining top quark and B decay observables. Eur. Phys. J. C 2020, 80, 136. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozachuk, A.; Melikhov, D. Constraints on the Anomalous Wtb Couplings from B-Physics Experiments. Symmetry 2020, 12, 1506. https://doi.org/10.3390/sym12091506
Kozachuk A, Melikhov D. Constraints on the Anomalous Wtb Couplings from B-Physics Experiments. Symmetry. 2020; 12(9):1506. https://doi.org/10.3390/sym12091506
Chicago/Turabian StyleKozachuk, Anastasiia, and Dmitri Melikhov. 2020. "Constraints on the Anomalous Wtb Couplings from B-Physics Experiments" Symmetry 12, no. 9: 1506. https://doi.org/10.3390/sym12091506
APA StyleKozachuk, A., & Melikhov, D. (2020). Constraints on the Anomalous Wtb Couplings from B-Physics Experiments. Symmetry, 12(9), 1506. https://doi.org/10.3390/sym12091506