Group Theoretical Approach to Pseudo-Hermitian Quantum Mechanics with Lorentz Covariance and c → ∞ Limit
Abstract
:1. Introduction
2. Pseudo-Hermiticity and Pseudo-Unitarity
3. The Irreducible Representations of
4. Pseudo-Hermitian Nature of the Representation of Symmetry Generators from the Fock States
5. Lorentz to Galilean Contraction
6. Group Theoretically-Based WWGM Framework with Wavefunctions in Coherent State Basis
6.1. The Algebra of Observables, Symmetries and Dynamics
6.2. Lorentz to Galilean Contraction
7. Contraction to Classical Theory in Brief
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Illustration of Problems in Unitary Formulation of Covariant Harmonic Oscillator
References
- Chew, C.S.; Kong, O.C.W.; Payne, J. Observables and Dynamics Quantum to Classical from a Relativity Symmetry and Noncommutative-Geometric Perspective. J. High Energy Phys. Gravit. Cosmol. 2019, 5, 553–586. [Google Scholar] [CrossRef] [Green Version]
- De Azcárraga, J.A.; Izquierdo, J.M. Lie Groups, Lie Algebras, Cohomology and Some Applications in Physics; Cambridge University Press: New York, NY, USA, 1995. [Google Scholar]
- Perelomov, A.M. Generalized Coherent States and Some of their Applications. Sov. Phys. Usp. 1977, 20, 703–720. [Google Scholar] [CrossRef]
- Zhang, W.-M.; Feng, D.H.; Gilmore, R. Coherent States: Theory and Some Applications. Rev. Mod. Phys. 1990, 62, 867–927. [Google Scholar] [CrossRef]
- Klauder, J.R. A Modern Approach to Functional Integration; Birkhäuser: Secaucus, NJ, USA, 2010. [Google Scholar]
- Palmer, T.W. Banach Algebras and the General Theory of *-Algebras Vol II; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Pedersen, G.K. C*-algebras and their Automorphism Groups; Academic Press: London, UK, 1979. [Google Scholar]
- Dubin, D.A.; Hennings, M.A.; Smith, T.B. Mathematical Aspects of Weyl Quantization and Phase; World Scientific: Singapore, 2000. [Google Scholar]
- Hansen, F. Quantum Mechanics in Phase Space. Rep. Math. Phys. 1984, 19, 361–381. [Google Scholar] [CrossRef]
- Gracia-Bondía, J.M.; Várilly, J.C. Algebras of Distributions Suitable for Phase-space Quantum Mechanics I. J. Math. Phys. 1988, 29, 869–879. [Google Scholar] [CrossRef]
- Zachos, C.K.; Fairlie, D.B.; Curtright, T.L. Quantum Mechanics in Phase Space: An Overview with Selected Papers; World Scientific: Singapore, 2005. [Google Scholar]
- Kong, O.C.W.; Liu, W.-Y. Noncommutative Coordinate Picture of the Quantum Phase Space. arXiv 2019, arXiv:1903.11962. NCU-HEP-k078. [Google Scholar]
- Kong, O.C.W. A Geometric Picture of Quantum Mechanics with Noncommutative Values for Observables. Results Phys. 2020, 19, 103606. [Google Scholar] [CrossRef]
- Chew, C.S.; Kong, O.C.W.; Payne, J. A Quantum Space Behind Simple Quantum Mechanics. Adv. High Energy Phys. 2017, 2017, 4395918. [Google Scholar] [CrossRef] [Green Version]
- Bacry, H.; Lévy-Leblond, J.-M. Possible Kinematics. J. Math. Phys. 1968, 9, 1605–1614. [Google Scholar] [CrossRef]
- Kong, O.C.W. A deformed relativity with the quantum ℏ. Phys. Lett. B 2008, 665, 58–61. [Google Scholar] [CrossRef] [Green Version]
- Kong, O.C.W.; Payne, J. The First Physics Picture of Contractions from a Fundamental Quantum Relativity Symmetry Including All Known Relativity Symmetries, Classical and Quantum. Int. J. Theor. Phys. 2019, 58, 1803–1827. [Google Scholar] [CrossRef] [Green Version]
- Zmuidzinas, J.S. Unitary Representations of the Lorentz Group on 4-Vector Manifolds. J. Math. Phys. 1966, 7, 764–780. [Google Scholar] [CrossRef]
- Johnson, J.E. Position Operators and Proper Time in Relativistic Quantum Mechanics. Phys. Rev. 1969, 181, 1755–1764. [Google Scholar] [CrossRef]
- Bars, I. Relativistic Harmonic Oscillator Revisited. Phys. Rev. D 2009, 79, 045009. [Google Scholar] [CrossRef] [Green Version]
- Kong, O.C.W. The Case for a Quantum Theory on a Hilbert Space with an Inner Product of Indefinite Signature. J. High Energy Phys. Gravit. Cosmol. 2020, 6, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Bedić, S.; Kong, O.C.W. Analysis on Complete Set of Fock States with Explicit Wavefunctions for the Covariant Harmonic Oscillator Problem. Symmetry 2020, 12, 39. [Google Scholar] [CrossRef] [Green Version]
- Dirac, P.A.M. The Physical Interpretation of Quantum Mechanics. Proc. R. Soc. Lond. A 1942, 180, 1–40. [Google Scholar] [CrossRef] [Green Version]
- Pauli, W. On Dirac’s New Method of Field Quantization. Rev. Mod. Phys. 1943, 15, 175–207. [Google Scholar] [CrossRef]
- Nagy, K.L. State Vector Spaces with Indefinite Metric in Quantum Field Theory; P. Noordhoff Ltd.: Groningen, The Netherlands, 1966. [Google Scholar]
- Gupta, S.N. Theory of Longitudinal Photons in Quantum Electrodynamics. Proc. Phys. Soc. A 1950, 63, 681–691. [Google Scholar] [CrossRef]
- Bleuler, K. Eine neue Methode zur Behandlung der longitudinalen und skalaren Photonen. Helv. Phys. Acta 1950, 23, 567–586. [Google Scholar]
- Bognár, J. Indefinite Inner Product Spaces; Springer: Berlin, Germany, 1974. [Google Scholar]
- Bender, C.M. Introduction to PT-Symmetric Quantum Theory. Contemp. Phys. 2005, 46, 277–292. [Google Scholar] [CrossRef] [Green Version]
- Das, A. Pseudo-Hermitian Quantum Mechanics. J. Phys. Conf. Ser. 2011, 287, 012002. [Google Scholar] [CrossRef]
- Mostafazadeh, A. Pseudo-Hermitian Representation of Quantum Mechanics. Int. J. Geometr. Methods Modern Phys. 2010, 7, 1191–1306. [Google Scholar] [CrossRef] [Green Version]
- Taylor, M.E. Noncommutative Harmonic Analysis; American Mathematical Society: Providence, RI, USA, 1986. [Google Scholar]
- Barut, A.O.; Raczka, R. Theory of Group Representations and Applications; 2nd rev. ed.; Polish Scientific Publishers: Warsaw, Poland, 1980. [Google Scholar]
- Gilmore, R. Lie Groups, Lie Algebras, and Some of Their Applications; Dover Publications, Inc.: Mineola, NY, USA, 2005. [Google Scholar]
- Inönü, E.; Wigner, E.P. On the Contraction of Groups and their Representations. Proc. Natl. Acad. Sci. USA 1953, 39, 510–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, D.-N.; Kong, O.C.W. Relativity Symmetries and Lie Algebra Contractions. Ann. Phys. 2014, 351, 275–289. [Google Scholar] [CrossRef]
- Kong, O.C.W.; Liu, W.-Y. Noncommutative Values of Quantum Observables. Chin. J. Phys. 2020, 69, 70–76. [Google Scholar] [CrossRef]
- Steinacker, H. Emergent gravity on covariant quantum spaces in the IKKT model. J. High Energy Phys. 2016, 156. [Google Scholar] [CrossRef] [Green Version]
- Sperling, M.; Steinacker, H. Higher spin gauge theory on fuzzy . J. Phys. A Math. Theor. 2018, 51, 075201. [Google Scholar] [CrossRef] [Green Version]
- Bojowald, M.; Brahma, S.; Buyukcama, U.; Ronco, M. Extending general covariance: Moyal-type noncommutative manifolds. Phys. Rev. D 2018, 98, 026031. [Google Scholar] [CrossRef] [Green Version]
- Bjorken, J.D.; Drell, S.D. Relativistic Quantum Mechanics; McGraw-Hill Inc.: New York, NY, USA, 1964. [Google Scholar]
- Mosses, R.E. The Reduction of the Dirac Equation to a Nonrelativistic Form. Am. J. Phys. 1971, 39, 1169–1172. [Google Scholar] [CrossRef]
- Baylis, W.E. Classical eigenspinors and the Dirac equation. Phys. Rev. A 1995, 45, 4293–4302. [Google Scholar] [CrossRef] [PubMed]
- Horwitz, L.P. Relativistic Quantum Mechanics; Springer Science+Business Media: Dordrecht, The Netherlands, 2015. [Google Scholar]
- Fanchi, J.R. Parametrized Relativistic Quantum Theory; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bedić, S.; Kong, O.C.W.; Ting, H.K. Group Theoretical Approach to Pseudo-Hermitian Quantum Mechanics with Lorentz Covariance and c → ∞ Limit. Symmetry 2021, 13, 22. https://doi.org/10.3390/sym13010022
Bedić S, Kong OCW, Ting HK. Group Theoretical Approach to Pseudo-Hermitian Quantum Mechanics with Lorentz Covariance and c → ∞ Limit. Symmetry. 2021; 13(1):22. https://doi.org/10.3390/sym13010022
Chicago/Turabian StyleBedić, Suzana, Otto C. W. Kong, and Hock King Ting. 2021. "Group Theoretical Approach to Pseudo-Hermitian Quantum Mechanics with Lorentz Covariance and c → ∞ Limit" Symmetry 13, no. 1: 22. https://doi.org/10.3390/sym13010022
APA StyleBedić, S., Kong, O. C. W., & Ting, H. K. (2021). Group Theoretical Approach to Pseudo-Hermitian Quantum Mechanics with Lorentz Covariance and c → ∞ Limit. Symmetry, 13(1), 22. https://doi.org/10.3390/sym13010022