Scalarized Nutty Wormholes
Abstract
:1. Introduction
2. Theoretical Setting
2.1. Action and Equations of Motion
2.2. Throats, Equators, and Boundary Conditions
2.3. Junction Conditions
2.4. Energy Conditions
3. Results
3.1. Numerics
3.2. Solutions
3.3. Domain of Existence
3.4. Throat Properties
3.5. Junction Conditions and Critical Polar Angle
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Damour, T.; Esposito-Farese, G. Nonperturbative strong field effects in tensor—Scalar theories of gravitation. Phys. Rev. Lett. 1993, 70, 2220. [Google Scholar] [CrossRef]
- Antoniou, G.; Bakopoulos, A.; Kanti, P. Evasion of No-Hair Theorems and Novel Black-Hole Solutions in Gauss–Bonnet Theories. Phys. Rev. Lett. 2018, 120, 131102. [Google Scholar] [CrossRef] [Green Version]
- Doneva, D.D.; Yazadjiev, S.S. New Gauss–Bonnet black holes with curvature induced scalarization in the extended scalar-tensor theories. Phys. Rev. Lett. 2018, 120, 131103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, H.O.; Sakstein, J.; Gualtieri, L.; Sotiriou, T.P.; Berti, E. Spontaneous scalarization of black holes and compact stars from a Gauss–Bonnet coupling. Phys. Rev. Lett. 2018, 120, 131104. [Google Scholar] [CrossRef] [Green Version]
- Antoniou, G.; Bakopoulos, A.; Kanti, P. Black-Hole Solutions with Scalar Hair in Einstein-Scalar–Gauss–Bonnet Theories. Phys. Rev. D 2018, 97, 084037. [Google Scholar] [CrossRef] [Green Version]
- Blázquez-Salcedo, J.L.; Doneva, D.D.; Kunz, J.; Yazadjiev, S.S. Radial perturbations of the scalarized Einstein-Gauss–Bonnet black holes. Phys. Rev. D 2018, 98, 084011. [Google Scholar] [CrossRef] [Green Version]
- Doneva, D.D.; Kiorpelidi, S.; Nedkova, P.G.; Papantonopoulos, E.; Yazadjiev, S.S. Charged Gauss–Bonnet black holes with curvature induced scalarization in the extended scalar-tensor theories. Phys. Rev. D 2018, 98, 104056. [Google Scholar] [CrossRef] [Green Version]
- Minamitsuji, M.; Ikeda, T. Scalarized black holes in the presence of the coupling to Gauss–Bonnet gravity. Phys. Rev. D 2019, 99, 044017. [Google Scholar] [CrossRef] [Green Version]
- Silva, H.O.; Macedo, C.F.B.; Sotiriou, T.P.; Gualtieri, L.; Sakstein, J.; Berti, E. Stability of scalarized black hole solutions in scalar–Gauss–Bonnet gravity. Phys. Rev. D 2019, 99, 064011. [Google Scholar] [CrossRef] [Green Version]
- Brihaye, Y.; Ducobu, L. Hairy black holes, boson stars and non-minimal coupling to curvature invariants. Phys. Lett. B 2019, 795, 135. [Google Scholar] [CrossRef]
- Myung, Y.S.; Zou, D. Quasinormal modes of scalarized black holes in the Einstein–Maxwell–Scalar theory. Phys. Lett. B 2019, 790, 400–407. [Google Scholar] [CrossRef]
- Bakopoulos, A.; Antoniou, G.; Kanti, P. Novel Black-Hole Solutions in Einstein-Scalar–Gauss–Bonnet Theories with a Cosmological Constant. Phys. Rev. D 2019, 99, 064003. [Google Scholar] [CrossRef] [Green Version]
- Doneva, D.D.; Staykov, K.V.; Yazadjiev, S.S. Gauss–Bonnet black holes with a massive scalar field. Phys. Rev. D 2019, 99, 104045. [Google Scholar] [CrossRef] [Green Version]
- Myung, Y.S.; Zou, D.C. Black holes in Gauss–Bonnet and Chern–Simons-scalar theory. Int. J. Mod. Phys. D 2019, 28, 1950114. [Google Scholar] [CrossRef] [Green Version]
- Macedo, C.F.B.; Sakstein, J.; Berti, E.; Gualtieri, L.; Silva, H.O.; Sotiriou, T.P. Self-interactions and Spontaneous Black Hole Scalarization. Phys. Rev. D 2019, 99, 104041. [Google Scholar] [CrossRef] [Green Version]
- Cunha, P.V.P.; Herdeiro, C.A.R.; Radu, E. Spontaneously Scalarized Kerr Black Holes in Extended Scalar-Tensor-Gauss–Bonnet Gravity. Phys. Rev. Lett. 2019, 123, 011101. [Google Scholar] [CrossRef] [Green Version]
- Bakopoulos, A.; Kanti, P.; Pappas, N. Existence of solutions with a horizon in pure scalar–Gauss–Bonnet theories. Phys. Rev. D 2020, 101, 044026. [Google Scholar] [CrossRef] [Green Version]
- Hod, S. Spontaneous scalarization of Gauss–Bonnet black holes: Analytic treatment in the linearized regime. Phys. Rev. D 2019, 100, 064039. [Google Scholar] [CrossRef] [Green Version]
- Collodel, L.G.; Kleihaus, B.; Kunz, J.; Berti, E. Spinning and excited black holes in Einstein-scalar–Gauss–Bonnet theory. Class. Quant. Grav. 2020, 37, 075018. [Google Scholar] [CrossRef] [Green Version]
- Bakopoulos, A.; Kanti, P.; Pappas, N. Large and Ultra-compact Gauss–Bonnet Black Holes with a Self-interacting Scalar Field. Phys. Rev. D 2020, 101, 084059. [Google Scholar] [CrossRef]
- Blázquez-Salcedo, J.L.; Doneva, D.D.; Kahlen, S.; Kunz, J.; Nedkova, P.; Yazadjiev, S.S. Axial perturbations of the scalarized Einstein-Gauss–Bonnet black holes. Phys. Rev. D 2020, 101, 104006. [Google Scholar] [CrossRef]
- Blázquez-Salcedo, J.L.; Doneva, D.D.; Kahlen, S.; Kunz, J.; Nedkova, P.; Yazadjiev, S.S. Polar quasinormal modes of the scalarized Einstein-Gauss–Bonnet black holes. arXiv 2020, arXiv:2006.06006. [Google Scholar] [CrossRef]
- Herdeiro, C.A.R.; Radu, E.; Silva, H.O.; Sotiriou, T.P.; Yunes, N. Spin-induced scalarized black holes. arXiv 2020, arXiv:2009.03904. [Google Scholar]
- Berti, E.; Collodel, L.G.; Kleihaus, B.; Kunz, J. Spin-induced black-hole scalarization in Einstein-scalar–Gauss–Bonnet theory. arXiv 2020, arXiv:2009.03905. [Google Scholar]
- Dima, A.; Barausse, E.; Franchini, N.; Sotiriou, T.P. Spin-induced black hole spontaneous scalarization. Phys. Rev. Lett. 2020, 125, 231101. [Google Scholar] [CrossRef]
- Hod, S. Onset of spontaneous scalarization in spinning Gauss–Bonnet black holes. Phys. Rev. D 2020, 102, 084060. [Google Scholar] [CrossRef]
- Doneva, D.D.; Collodel, L.G.; Krüger, C.J.; Yazadjiev, S.S. Black hole scalarization induced by the spin: 2+1 time evolution. Phys. Rev. D 2020, 102, 104027. [Google Scholar] [CrossRef]
- Ayzenberg, D.; Yagi, K.; Yunes, N. Linear Stability Analysis of Dynamical Quadratic Gravity. Phys. Rev. D 2014, 89, 044023. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, T.; Motohashi, H.; Suyama, T. Black hole perturbation in the most general scalar-tensor theory with second-order field equations I: The odd-parity sector. Phys. Rev. D 2012, 85, 084025, Erratum in 2017, 96, 109903. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, T.; Motohashi, H.; Suyama, T. Black hole perturbation in the most general scalar-tensor theory with second-order field equations II: The even-parity sector. Phys. Rev. D 2014, 89, 084042. [Google Scholar] [CrossRef] [Green Version]
- Yunes, N.; Pretorius, F. Dynamical Chern–Simons Modified Gravity. I. Spinning Black Holes in the Slow-Rotation Approximation. Phys. Rev. D 2009, 79, 084043. [Google Scholar] [CrossRef] [Green Version]
- Konno, K.; Matsuyama, T.; Tanda, S. Rotating black hole in extended Chern–Simons modified gravity. Prog. Theor. Phys. 2009, 122, 561. [Google Scholar] [CrossRef] [Green Version]
- Cambiaso, M.; Urrutia, L.F. An extended solution space for Chern–Simons gravity: The slowly rotating Kerr black hole. Phys. Rev. D 2010, 82, 101502. [Google Scholar] [CrossRef] [Green Version]
- Yagi, K.; Yunes, N.; Tanaka, T. Slowly Rotating Black Holes in Dynamical Chern–Simons Gravity: Deformation Quadratic in the Spin. Phys. Rev. D 2012, 86, 044037, Erratum in 2014, 89, 049902. [Google Scholar] [CrossRef] [Green Version]
- Stein, L.C. Rapidly rotating black holes in dynamical Chern–Simons gravity: Decoupling limit solutions and breakdown. Phys. Rev. D 2014, 90, 044061. [Google Scholar] [CrossRef] [Green Version]
- Konno, K.; Takahashi, R. Scalar field excited around a rapidly rotating black hole in Chern–Simons modified gravity. Phys. Rev. D 2014, 90, 064011. [Google Scholar] [CrossRef] [Green Version]
- McNees, R.; Stein, L.C.; Yunes, N. Extremal black holes in dynamical Chern–Simons gravity. Class. Quant. Grav. 2016, 33, 235013. [Google Scholar] [CrossRef]
- Delsate, T.; Herdeiro, C.; Radu, E. Non-perturbative spinning black holes in dynamical Chern–Simons gravity. Phys. Lett. B 2018, 787, 8. [Google Scholar] [CrossRef]
- Taub, A.H. Empty space-times admitting a three parameter group of motions. Annals Math. 1951, 53, 472. [Google Scholar] [CrossRef]
- Newman, E.T.; Tamburino, L.; Unti, T. Empty space generalization of the Schwarzschild metric. J. Math. Phys. 1963, 4, 915. [Google Scholar] [CrossRef]
- Misner, C.W. Taub-NUT space as a counterexample to almost anything. Relat. Theory Astrophys. 1967, 1, 160. [Google Scholar]
- Misner, C.W. Relativity Theory and Astrophysics I: Relativity and Cosmology; Ehlers, J., Ed.; Lectures in Applied Mathematics; American Mathematical Society: Providence, RI, USA, 1967; Volume 8, p. 160. [Google Scholar]
- Bonnor, W.B. A new interpretation of the NUT metric in general relativity. Proc. Camb. Phil. Soc. 1969, 66, 145. [Google Scholar] [CrossRef]
- Bonnor, W.B. The interactions between two classical spinning particles. Class. Quant. Grav. 2001, 18, 1381. [Google Scholar] [CrossRef]
- Manko, V.S.; Ruiz, E. Physical interpretation of NUT solution. Class. Quant. Grav. 2005, 22, 3555. [Google Scholar] [CrossRef] [Green Version]
- Brihaye, Y.; Herdeiro, C.; Radu, E. The scalarised Schwarzschild-NUT spacetime. Phys. Lett. B 2019, 788, 295. [Google Scholar] [CrossRef]
- Brihaye, Y.; Radu, E. Remarks on the Taub-NUT solution in Chern–Simons modified gravity. Phys. Lett. B 2017, 764, 300. [Google Scholar] [CrossRef]
- Morris, M.S.; Thorne, K.S. Wormholes in space-time and their use for interstellar travel: A tool for teaching general relativity. Am. J. Phys. 1988, 56, 395. [Google Scholar] [CrossRef] [Green Version]
- Visser, M. Lorentzian Wormholes: From Einstein to Hawking; AIP: Woodbury, NY, USA, 1995. [Google Scholar]
- Lobo, F.S. Introduction. Fundam. Theor. Phys. 2017, 189, 1. [Google Scholar]
- Visser, M.; Kar, S.; Dadhich, N. Traversable wormholes with arbitrarily small energy condition violations. Phys. Rev. Lett. 2003, 90, 201102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kar, S.; Dadhich, N.; Visser, M. Quantifying energy condition violations in traversable wormholes. Pramana 2004, 63, 859. [Google Scholar] [CrossRef] [Green Version]
- Hochberg, D. Lorentzian wormholes in higher order gravity theories. Phys. Lett. 1990, B251, 349. [Google Scholar] [CrossRef]
- Fukutaka, H.; Tanaka, K.; Ghoroku, K. Wormhole Solutions In Higher Derivative Gravity. Phys. Lett. B 1989, 222, 191. [Google Scholar] [CrossRef]
- Ghoroku, K.; Soma, T. Lorentzian wormholes in higher derivative gravity and the weak energy condition. Phys. Rev. 1992, D46, 1507. [Google Scholar] [CrossRef]
- Furey, N.; De Benedictis, A. Wormhole throats in Rm gravity. Class. Quant. Grav. 2005, 22, 313. [Google Scholar] [CrossRef] [Green Version]
- Eiroa, E.F.; Richarte, M.G.; Simeone, C. Thin-shell wormholes in Brans-Dicke gravity. Phys. Lett. A 2008, 373, 1. [Google Scholar] [CrossRef] [Green Version]
- Bronnikov, K.A.; Elizalde, E. Spherical systems in models of nonlocally corrected gravity. Phys. Rev. D 2010, 81, 044032. [Google Scholar] [CrossRef] [Green Version]
- Antoniou, G.; Bakopoulos, A.; Kanti, P.; Kleihaus, B.; Kunz, J. Novel Einstein-scalar–Gauss–Bonnet wormholes without exotic matter. Phys. Rev. D 2020, 101, 024033. [Google Scholar] [CrossRef] [Green Version]
- Kanti, P.; Kleihaus, B.; Kunz, J. Wormholes in Dilatonic Einstein-Gauss–Bonnet Theory. Phys. Rev. Lett. 2011, 107, 271101. [Google Scholar] [CrossRef] [Green Version]
- Kanti, P.; Kleihaus, B.; Kunz, J. Stable Lorentzian Wormholes in Dilatonic Einstein-Gauss–Bonnet Theory. Phys. Rev. D 2012, 85, 044007. [Google Scholar] [CrossRef] [Green Version]
- Lobo, F.S.N.; Oliveira, M.A. Wormhole geometries in f(R) modified theories of gravity. Phys. Rev. D 2009, 104012. [Google Scholar] [CrossRef] [Green Version]
- Harko, T.; Lobo, F.S.N.; Mak, M.K.; Sushkov, S.V. Modified-gravity wormholes without exotic matter. Phys. Rev. D 2013, 87, 067504. [Google Scholar] [CrossRef] [Green Version]
- Kanti, P.; Mavromatos, N.E.; Rizos, J.; Tamvakis, K.; Winstanley, E. Dilatonic Black Holes in Higher Curvature String Gravity. Phys. Rev. D 1996, 54, 5049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibadov, R.; Kleihaus, B.; Kunz, J.; Murodov, S. Wormholes in Einstein-scalar–Gauss–Bonnet theories with a scalar self-interaction potential. Phys. Rev. D 2020, 102, 064010. [Google Scholar] [CrossRef]
- Israel, W. Singular hypersurfaces and thin shells in general relativity. Nuovo Cim. B 1966, 44S10, 1, Erratum in 1967, 48, 463. [Google Scholar]
- Davis, S.C. Generalized Israel junction conditions for a Gauss–Bonnet brane world. Phys. Rev. D 2003, 67, 024030. [Google Scholar] [CrossRef] [Green Version]
- Kleihaus, B.; Kunz, J.; Kanti, P. Particle-like ultracompact objects in Einstein-scalar–Gauss–Bonnet theories. Phys. Lett. B 2020, 804, 135401. [Google Scholar] [CrossRef]
- Kleihaus, B.; Kunz, J.; Kanti, P. Properties of ultracompact particlelike solutions in Einstein-scalar–Gauss–Bonnet theories. Phys. Rev. D 2020, 102, 024070. [Google Scholar] [CrossRef]
- Clément, G.; Gal’tsov, D.; Guenouche, M. NUT wormholes. Phys. Rev. D 2016, 93, 024048. [Google Scholar] [CrossRef] [Green Version]
- Brihaye, Y.; Renaux, J. Scalarized-charged wormholes in Einstein-Gauss–Bonnet gravity. arXiv 2020, arXiv:2004.12138. [Google Scholar]
- Odintsov, S.D.; Oikonomou, V.K. Inflationary Phenomenology of Einstein Gauss–Bonnet Gravity Compatible with GW170817. Phys. Lett. B 2019, 797, 134874. [Google Scholar] [CrossRef]
- Oikonomou, V.K.; Fronimos, F.P. Reviving non-Minimal Horndeski-like Theories after GW170817: Kinetic Coupling Corrected Einstein-Gauss–Bonnet Inflation. arXiv 2020, arXiv:2006.05512. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibadov, R.; Kleihaus, B.; Kunz, J.; Murodov, S. Scalarized Nutty Wormholes. Symmetry 2021, 13, 89. https://doi.org/10.3390/sym13010089
Ibadov R, Kleihaus B, Kunz J, Murodov S. Scalarized Nutty Wormholes. Symmetry. 2021; 13(1):89. https://doi.org/10.3390/sym13010089
Chicago/Turabian StyleIbadov, Rustam, Burkhard Kleihaus, Jutta Kunz, and Sardor Murodov. 2021. "Scalarized Nutty Wormholes" Symmetry 13, no. 1: 89. https://doi.org/10.3390/sym13010089
APA StyleIbadov, R., Kleihaus, B., Kunz, J., & Murodov, S. (2021). Scalarized Nutty Wormholes. Symmetry, 13(1), 89. https://doi.org/10.3390/sym13010089